Modeling Bicycle Passing Maneuvers on Multilane Separated Bicycle Paths


Bicycle passing maneuvers represent interferences between bicycle travelers and are important operational attributes of bicycle traffic. The number of bicycle passing maneuvers has been used to evaluate the level of service (LOS) of off-street bicycle facilities. The primary objectives of this paper are to propose a method to model bicycle passing maneuvers on multilane bicycle paths with heavy bicycle traffic and explore the characteristics of those passes. The authors classified bicycle passing maneuvers into free, adjacent, and delayed passes according to the lateral distance between bicyclists during the passing. Models were developed to estimate the number of each type of passing maneuver on unidirectional two-, three- and four-lane bicycle paths. The authors used field observations of bicycle traffic on bicycle paths in Nanjing, China to calibrate and validate these models. The model predictions on bicycle passing maneuvers were consistent with the observations. The model sensitivity analyses showed that all passing maneuvers increase as bicycle flow rate increases. The faster a bicycle runs, the more passes the rider encounters. All types of passing maneuvers linearly increase as the standard deviation of bicycle speeds increases. On wider bicycle paths, the probability of free passes remarkably increases, whereas the probabilities of adjacent and delayed passes significantly decrease.

Publication date: 
August 22, 2012
Publication type: 
Technical Report