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Pedestrian and bicycle activity at intersections and segments is routinely mod-
eled as direct demand models in traffic safety literature. These models estimate 
the expected number of trips at a given location for a given time period as a func-
tion of socio-economic and built environment characteristics. As the dependent 
variables are typically positive, many studies utilize log-linear regression models, 
which use a logarithmic transformation to ensure that estimates derived from the 
model are positive once back-transformed. While commonly used, this back-trans-
formation approach does not estimate the mean of the depedent variable.

Let y be the dependent variable (e.g., annual pedestrian volumes, peak hour bi-
cycle counts), and the X be the explanatory variables (e.g., population, employ-
ment, network density, slope). If y > 0, the log-linear regression framework, solved 
using ordinary least squarses (OLSLT), is applicable as follows:

The back-transformed estimate that is typically used as the model output is:

However the mean estimate of y for the log-linear model is given by:
µOLSLT = E(y|X) = E(exp(Xβ + ε)|X)

= exp(Xβ) exp(0.5σ2(X))

Thus, the backtransformed estimate of a log-linear model, which represents the 
median of y, is biased. However, under heteroscecadisticty, even the mean OLSLT 
estimate can be biased, since the functional form of the variance is unknown.
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Generalized Linear Model Alternatives

empirical Dataset

For generalized linear models (GLM), it is possible to use a log link to estimate 
E(y|X) as follows:

E(y|X) = exp(Xβ)

However, for a given link function, different assumptions on the mean-variance 
relationship lead to different types of GLM specifications: 
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Simulated Datasets

Evaluation Criteria
We use both simulated and empirical datasets to evaluate log-linear and other 
GLM specifications using the following criteria:
• Stability of coefficients: variation in sign/magnitude across data samples
• Overfitting: compare root mean squared errors (RMSE) for training and test     
      data

Training/test data: 10,000 observations; number of simulations: 10,000 runs

Stability of Coefficients Coefficients

Training vs Test Data (Under Heteroscedasticity)

log(y|X) = Xβ + ε; ε ∼ N(0, σ2(X))

Once the constant variance assumption is violated, the coefficients under OLSLT 
cannot be estimated accurately. 

Ground truth for GLM coefficients was estimated as follows:

βGLM,i =
∂log(E(y|X))

∂xi

= βi + 0.5
∂(f(X)2)

∂xi

Our empirical dataset is comprised of annual pedestrian counts for 1,268 intersec-
tions in California. The Breusch-Pagan Test for heteroscedasticity yielded a p-val-
ue < 0.001.
Stability of Coefficients

Training vs Test Data

1000 simulations run with 20% of data used as test data.

GLMGLL shows counterintuitive signs for multiple variables; GLMQP in one case.

Homoscedastic mean for OLSLT performs the worst among all GLM options for 
entire dataset, but is superior to all but GLMQP when applied to a smaller subset 
of intersections with less population (and lower concern of heteroscedasticity)

Discussion

• Under heteroscedasticity, OLSLT is inferior to other GLM alternative.
• GLMGLL is most prone to overfitting: outperforms in training (over test) data.

• Tests for heteroscedasticity are essential when considering log-linear models.
• GLM models, in particular GLMQP and GLMNB, are more robust alternatives, 
      especially when the dependent variable can be zero (e.g., bicycle volumes).
• Trade-off between coefficient stability and predictive quality of the final model 
      depends on the desired use of the direct demand model.
• Random parameter specifications will be considered in future research.

Deterministic Component Error Component

E(log(y|X)) = Xβ ⇒ ŷOLSLT = exp(Xβ)


