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a b s t r a c t

Development of crash prediction models at the county-level has drawn the interests of state agencies for
forecasting the normal level of traffic safety according to a series of countywide characteristics. A com-
mon technique for the county-level crash modeling is the generalized linear modeling (GLM) procedure.
However, the GLM fails to capture the spatial heterogeneity that exists in the relationship between crash
counts and explanatory variables over counties. This study aims to evaluate the use of a Geographically
Weighted Poisson Regression (GWPR) to capture these spatially varying relationships in the county-level
crash data. The performance of a GWPR was compared to a traditional GLM. Fatal crashes and countywide
factors including traffic patterns, road network attributes, and socio-demographic characteristics were
collected from the 58 counties in California. Results showed that the GWPR was useful in capturing
the spatially non-stationary relationships between crashes and predicting factors at the county level.
By capturing the spatial heterogeneity, the GWPR outperformed the GLM in predicting the fatal crashes
in individual counties. The GWPR remarkably reduced the spatial correlation in the residuals of predic-
tions of fatal crashes over counties.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Previously, traffic safety analysis at spatially aggregated levels
has drawn the interests of safety researchers to meet the needs
of region-level safety inspection and emerging safety planning
(Hadayeghi et al., 2003, 2006, 2010a; Noland and Quddus, 2004;
Quddus, 2008; Huang et al., 2010; Zhang et al., 2012; Pirdavani
et al., 2013). In recent years, state agencies have paid particular
attention to the traffic safety evaluation at the county spatial level
(Fridstrøm and Ingebrigtsen, 1991; Tarko et al., 1996; Karlaftis and
Tarko, 1998; Amoros et al., 2003; Noland and Oh, 2004; Aguero-
Valverde and Jovanis, 2006; Donaldson et al., 2006; Traynor,
2008; Darwiche, 2009; Huang et al., 2010; Chang et al., 2011; Han-
na et al., 2012). In particular, crash counts are aggregated at a
county level to relate traffic safety to a series of countywide factors
including traffic patterns, road network attributes, as well as socio-
demographic characteristics.
ll rights reserved.
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County-level crash risk analysis has become more popular since
road safety has been increasing considered a necessary component
in transportation planning process for counties (de Guevara et al.,
2004; FHWA, 2005; NCHRP, 2010). Crash prediction modes are
useful in predicting the expected number of crashes and estimat-
ing the normal safety situations in individual counties based on
the countywide characteristics. Counties with greater-than-ex-
pected crashes can be identified and countermeasures can be
implemented in these areas. For those reasons, it is desirable to de-
velop county-level crash prediction models that have reasonably
accurate predictions for crashes in individual counties.

A common technique for the county-level crash modeling is the
generalized linear modeling (GLM) procedure. However, since the
parameters in a GLM are assumed to be fixed, the GLM fails to cap-
ture the spatial heterogeneity in the relationships between crashes
and predictors. Recently, a new methodology named Geographi-
cally Weighted Poisson Regression (GWPR) has been used by
researchers for traffic safety analysis at traffic analysis zone (TAZ)
levels (Hadayeghi et al., 2010a; Zhang et al., 2012; Pirdavani et al.,
2013). The parameters in a GWPR are allowed to vary over space to
capture the spatially varying relationships in the data. However,
none of previous studies have used the GWPR for county-level
crash analysis. An evaluation on the performance of a GWPR for
the county-level data is necessary because the predicting variables
at the county level are aggregated at a different spatial scale from

http://dx.doi.org/10.1016/j.ssci.2013.04.005
mailto:lizhibin@seu.edu.cn
mailto:wangwei@seu.edu.cn
mailto:liupan@seu.edu.cn
mailto:jbigham@berkeley.edu
mailto:davidr@berkeley.edu
mailto:davidr@berkeley.edu
http://dx.doi.org/10.1016/j.ssci.2013.04.005
http://www.sciencedirect.com/science/journal/09257535
http://www.elsevier.com/locate/ssci


90 Z. Li et al. / Safety Science 58 (2013) 89–97
these at the TAZ level. Besides, the sample size for the crash fre-
quency modeling at the TAZ level is usually over hundreds. While
in the analysis of county level crashes, the available sample size is
strictly restricted by the number of counties in the study area. The
small sample size issue could result in inaccurate estimates in sta-
tistical modeling procedures (Wood, 2002; Lord, 2006; Washing-
ton et al., 2010; Lord and Mannering, 2010).

The primary objective of this study is to evaluate the applica-
tion of the GWPR modeling technique for the crash frequency
modeling at the county level. More specifically, this study aims
to answer the following questions: (1) if a GWPR is useful in cap-
turing the spatial non-stationarity in the relationship between
crashes and predictors over counties; and (2) if a GWPR outper-
forms a traditional GLM in predicting crash counts using county-le-
vel data with a small sample size. The remainder of this paper is
organized as follows. The following section reviews the existing
work. Section 3 introduces the methodology. Section 4 shows the
data resources. Section 5 discusses the modeling results. The paper
ends with concluding remarks and future work in Section 6.
2. Literature review

Previously, numerous studies have evaluated the crash risks at
the county spatial level. The most commonly used technique for
the county-level crash modeling is the GLM procedure with its ran-
dom component follows a Poisson or Negative Binomial (NB) dis-
tribution (Fridstrøm and Ingebrigtsen, 1991; Tarko et al., 1996;
Karlaftis and Tarko, 1998; Amoros et al., 2003; Noland and Oh,
2004; Traynor, 2008; Chang et al., 2011). Within a GLM framework,
fixed coefficient estimates explain the associations between crash
counts and explanatory variables in individual counties. For exam-
ple, Noland and Oh (2004) developed the NB models to evaluate
the impacts of road network infrastructure and geometric design
on the county-level fatal and total crashes based on the 4-year data
for 102 counties in Illinois.

Several researchers have used the Bayesian spatial models for
the county-level traffic safety analysis (Aguero-Valverde and Jov-
anis, 2006; Darwiche, 2009; Huang et al., 2010). The advantage
of Bayesian spatial models is that they can account for the spatial
correlation in the county-level crash data, which refers to the fact
that crashes tend to be more clustered by groups that are spatially
close to each other by sharing some unobservable effects of factors.
For example, Huang et al. (2010) developed the Bayesian spatial
models for the 67 counties in Florida. They reported that significant
spatial correlations in crashes were identified across adjacent
counties. The Bayesian spatial models fitted the data better than
the GLMs did.

The traditional GLMs are limited in capturing the spatial heter-
ogeneity in the crash data. The outputs from a GLM consist of a set
of fixed global parameters that do not vary over counties. The
Bayesian spatial models employed previously are also limited to
a CAR prior with fixed main parameters. The fixed parameters in
these models represent that the impacts of countywide variables
on crash counts are the same between different counties. Actually,
however, the impacts of predicting variables could not be station-
ary over space. In other words, it is possible that some variables
have large impacts in certain counties but have small impacts in
other counties. Thus, the accuracy of such global models for pre-
dicting county-level crashes could be suspect.

Previously, several methods have been developed to account for
the spatial heterogeneity in spatial data. In these models, the
parameters of explanatory variables are allowed to vary spatially.
These methods include the random parameter model (EI-Basyouny
and Sayed, 2009; Anastasopoulos and Mannering, 2009),
Geographically Weighted Regression (GWR) technique (Zhao and
Park, 2004; Chow et al., 2006; Du and Mulley, 2006; Ibeas et al.,
2011; Wang et al., 2011; Hadayeghi et al., 2010a; Zhang et al.,
2012; Pirdavani et al., 2013), Full Bayesian semiparametric addi-
tive technique (Hadayeghi et al., 2010b), and Bayesian hierarchical
model (Quddus, 2008). Among them, the GWR is the most com-
monly used modeling technique. The GWR has been reported to
provide more accurate estimates than the global GLMs. Until re-
cently, only a few studies have used the GWR for the crash fre-
quency modeling (Hadayeghi et al., 2010a; Zhang et al., 2012;
Pirdavani et al., 2013). Since crashes are presented as count data,
a Poisson regression in conjunction with a GWR, i.e., a Geographi-
cally Weighted Poisson Regression (GWPR), is commonly used to
fit the spatial crash data. It was reported that the calibrated GWPR
captured the spatially varying relationships between crashes and
predictors and outperformed the traditional GLMs in predicting
the TAZ-level crashes.

A review on the literature shows that the spatial heterogeneity
in the county-level crash data should be properly considered in the
development of crash prediction models to improve the predicting
accuracy for crashes. The GWPR technique has been used to ac-
count for the spatial heterogeneity in the crash modeling at the
TAZ level. However, none of previous studies have used the GWPR
for the county-level crash data analysis. The predicting variables at
the county level are aggregated at a different spatial scale as com-
pared to the TAZ level. And the county-level crash data usually suf-
fers from a small sample size issue which does not exist in the TAZ
level datasets. An evaluation on the performance of the GWPR
modeling technique particularly for the county-level crash data is
important to safety researchers. The findings can help state agen-
cies select appropriate approaches in the development of county-
level crash prediction models.

The GWPR in the present study is specified in the available soft-
ware ‘‘GWRx3.0’’ developed by Charlton et al. (2003) for the GWPR
calibration. It is clarified that although it would be beneficial to
evaluate the Geographically Weighted Negative Binomial regres-
sion, the ‘‘GWRx3.0’’ does not support the calibration of GWR with
a NB structure and as such these models are not calibrated in this
study. In our study, the local models are fitted using a number of
vicinity observations that are similar in their characteristics. Thus
it is expected that the variance of crash counts will become much
closer to the mean during the estimates for local parameters in a
GWPR (Pirdavani et al., 2013). Besides, it is worth noting that the
use of Poisson regression instead of NB does not produce much
inaccurate estimates in general since the model coefficients are
similar for the two error distributions (Miaou, 1994; Hadayeghi
et al., 2010a). This justifies the choice of Poisson error distribution
that is adopted in this study.
3. Methodology

Both the GLM and the GWPR were calibrated in the present
study. The two techniques for the county-level crash frequency
modeling were briefly described in this section. The goodness of
fit measures for the model comparison as well as the Moran’s I sta-
tistics for the tests on spatial correlation were also introduced.

3.1. GLM

A GLM usually consists of three components, a random compo-
nent, a systematic component, and a link function that connects
the random and systematic components to produce a linear predic-
tor (Lord and Persaud, 2000). One important property of a GLM is
its flexibility in specifying the probability distribution for the
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random component. Thus, the GLMs have been widely used in the
context of traffic safety, for which the distribution of crash counts
often follows a Poisson or NB distribution (Washington et al.,
2010). The difference between a Poisson model and a NB model
is that the NB model can deal with the over-dispersion which indi-
cates the variance exceeds the mean of crash counts.

The link function and linear predictor determine the functional
form of the model. After a review on the model specifications for
county-level crash frequency modeling in previous studies (Amo-
ros et al., 2003; Aguero-Valverde and Jovanis, 2006; Darwiche,
2009; Huang et al., 2010), the following model form is considered
in the present study:

lnðYÞ ¼ lnðb0Þ þ b1 lnðDVMTÞ þ b2X2 þ b3X3 þ . . .þ bJXJ þ e ð1Þ

where ln(Y) is the natural log of expected crash count per county
per year, DVMT is the daily vehicle miles traveled, Xj is the jth
explanatory variable (j = 2, 3, . . . , J), bj is the jth model parameter
(j = 0, 1, . . . , J), and e is the error term.

As discussed above, the parameters b with explanatory vari-
ables X in the GLM are estimated globally and do not change over
counties. The fixed parameter bj represents the average impact of
the jth variable on crash count across all counties.

3.2. GWPR

In a GWPR, the crash counts are predicted by a set of explana-
tory variables of which the parameters are allowed to vary over
space. Similar to Eq. (1), the model specification of the GWPR in
the present study is:

lnðYÞ ¼ lnðb0ðuiÞÞ þ b1ðuiÞ lnðDVMTÞ þ b2ðuiÞX2 þ b3ðuiÞX3

þ . . .þ bJðuiÞXJ þ e ð2Þ

Note that bj is now a function of location ui = (uxi, uyi) denoting
the two dimensional coordinates of the ith point (ith county cen-
troid in this study) in space. This means that the parameter
b = (b0, b1, . . . , bJ) estimated in Eq. (2) are allows to be different be-
tween counties. Thus, the spatial heterogeneity is addressed in the
GWPR modeling framework. The parameter b can be expressed in
the following matrix form:

b ¼

b0ðux1;uy1Þ b1ðux1;uy1Þ � � � bJðux1;uy1Þ
b0ðux2;uy2Þ b1ðux2;uy2Þ � � � bJðux2;uy2Þ
� � � � � � � � � � � �

b0ðuxn;uynÞ b1ðuxn;uynÞ � � � bJðuxn;uynÞ

2
6664

3
7775 ð3Þ

where n is the number of counties. The parameters for each county,
which form a row in the matrix in Eq. (3), are estimated as follows
(Fotheringham et al., 2002):

b̂ðiÞ ¼ ðXT Wðuxi;uyiÞXÞ�1XT Wðuxi;uyiÞY ð4Þ

In Eq. (4), W(uxi, uyi) denotes an n by n spatial weight matrix
that can be conveniently expressed as W(i):

WðiÞ ¼

wi1 0 � � � 0
0 wi2 � � � 0
� � � � � � � � � � � �
0 � � � � � � win

2
6664

3
7775 ð5Þ

where wij(j = 1, 2, . . . , n) is the weight given to county j in the cali-
bration of model for county i.

In the GWPR modeling framework, a regression equation is esti-
mated for each county based on the observations in nearby coun-
ties. The estimation process was repeated for all regression points.
Each county is weighted by its distance from the regression point.
Hence, the data in counties closer to the regression point are
weighted more heavily than are the data in counties farther away.
In other words, the observations closer to county i have more of an
influence on the estimation of i’s parameter bj(ui) than those coun-
ties farther from i. This influence around i is described by the
weighting function wij. The Gaussian and bi-square functions are
commonly used to produce the weighting scheme as follows:

Gaussian : wij ¼ exp �1
2
� kui � ujk

G

� �
ð6Þ

Bi-square : wij ¼
½1� ðkui � ujk=GiÞ2�2 if kui � ujk < Gi

0 otherwise

(
ð7Þ

The parameter Gi is a quantity known as the bandwidth. When
Gi approaches infinity, wij approaches 1 and the GWPR becomes a
global model expressed in Eq. (1). The bandwidth is constant in
the Gaussian function (fixed kernel) that sets the magnitude of
the weighting function to be the same for every county. A potential
problem that might arise in the GWR with fixed kernel is that for
some points, where data are sparse, the local models might be cal-
ibrated on very few data points, giving rise to parameter estimates
with large standard errors and unpredictable results. To reduce
these problems, the bi-square function (adaptive kernel) allows
the weighting scheme to vary spatially according to the density
of data. The kernels have larger bandwidths where the data are
sparse and have smaller bandwidths where the data are plentiful.
Thus, the adaptive kernel is employed in the GWPR in this study.

The selection of bandwidth is important in the GWPR modeling
procedure. With a large dataset, the bandwidth selection can be
made using a sample (%) of data points in order to reduce workload
and save time. However, the crash data at the county level has a
small sample size. The estimates for local models may not have en-
ough observations if a low percentage of sample is specified. Thus,
during the modeling procedure in our study, all data are used in
the adaptive kernel to determine the optimal bandwidth. The Cor-
rected Akaike Information Criterion (AICc) is used for the selection
of bandwidth in the adaptive kernels. The model with the lowest
AICc indicates the best model performance (Fotheringham et al.,
2002; Nakaya et al., 2005; Hadayeghi et al., 2010a). The AICc is also
used to determine the model specification. The best GWPR is the
one with the lowest AICc and is selected as the final model form.

3.3. Measures of goodness of fit

The performance of a GWPR in predicting county-level crashes
is compared to that of a traditional GLM. The measures of goodness
of fit used for model comparison are the mean absolute deviation
(MAD), and the mean squared prediction error (MSPE). The MAD
provides a measure of the average misprediction of the model.
The MSPE is typically used to assess the error associated with a
prediction. A smaller value of MAD or MSPE suggests that, on aver-
age, the model predicts the observed data better. These measures
are described as follows:

MAD ¼
PN

i¼1jŶ i � Yij
N

ð8Þ

MSPE ¼
PN

i¼1ðŶ i � YiÞ2

N
ð9Þ

where Yi is the observed number of crashes in county i, Ŷ i is the pre-
dicted number of crashes in county i, and N is the number of
counties.

3.4. Moran’s I statistics

In statistics, Moran’s I is a measure of spatial autocorrelation
developed by Moran (1950). In this study, the Moran’s I test is em-
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ployed to investigate whether the residuals of predictions for
county-level crashes are spatially correlated among adjacent coun-
ties. A negative (positive) value of Moran’s I indicates a negative
(positive) spatial autocorrelation over counties. Values of Moran’s
I range from �1 (indicating perfect dispersion) to +1 (perfect corre-
lation). A zero value indicates a random spatial pattern. The Mor-
an’s I tests were conducted in the ArcGIS 10.

4. Data

4.1. Data resource

A four-year frame data, from 2007 to 2010, were collected from
the 58 counties in the state of California. The data included four
types of information in each individual county: counts of fatal
crashes, traffic patterns, road network attributes, and socio-demo-
graphic characteristics. The reliability of the input data is impor-
tant to the estimating results of the models. In this study, all the
input data were collected from the authoritative agencies in the
California and United States.

Fatal crash counts aggregated by county in California were ob-
tained from the Fatal Accident Reporting System (FARS) created
by the National Highway Traffic Safety Administration (NHTSA).
Traffic patterns and road network attributes were collected from
the Highway Performance Monitoring System (HPMS) maintained
by the California Department of Transportation (Caltrans). Vehicle
registration and licensed drivers information were retrieved from
the Department of Motor Vehicles (DMV) in California. A variety
of socio-demographic characteristics for counties in California
were available from the U.S. Census Bureau. All data in each county
were geocoded in the Geographic Information System (GIS).

4.2. Data description

Crash count per year in the 58 California counties ranges from
1.33 in the Alpine County to as high as 644.33 in the Los Angeles
County, with a mean of 54.45 and a standard deviation of 98.25.
Los Angeles County has the largest amount of fatalities, along with
the largest population and DVMT. Thus, the data of Los Angeles
County is not considered as an outlier. The distribution of fatal
crash counts in California counties is shown in Fig. 1a. Crashes
Fig. 1. (a) Yearly fatal crashes by county in California; and
are more concentrated in the south and east regions. Regions in
the northwest are associated with fewer crashes.

In the present study, the DVMT is utilized as the exposure var-
iable as suggested by many prior studies (Amoros et al., 2003; Agu-
ero-Valverde and Jovanis, 2006; Darwiche, 2009; Huang et al.,
2010; Hadayeghi et al., 2010a; Pirdavani et al., 2013). The distribu-
tion of DVMT in California counties is shown in Fig. 1b. As ex-
pected, the distribution of DVMT is naturally consistent with that
of crash count. An explanatory analysis was conducted to fit the
crash counts to the exposure variable with a nonlinear regression
assumption. A good-fitting relationship was obtained by taking
the natural logarithm of the variables, as shown in Fig. 2. In gen-
eral, the increase in DVMT results in a larger amount of fatal
crashes. We also tested the correlation between the DVMT and
the other explanatory variables. It was found that the DVMT posi-
tively impact most of the independent variables. It indicates the
DVMT is a good measure of exposure for fatal crashes at the county
level in California.

The variables used for model development and their descriptive
statistics are shown in Table 1. The dependent variable is the fatal
crash count per year in each county. The explanatory variables are
the predictors that are commonly used in previous studies for the
county-level crash analysis. Thus, the results of this study regard-
ing the effects of predictors on county-level crashes can be conve-
niently compared to previous findings.

5. Results and discussion

The four-year frame data were divided into two subsets. The
data from 2007 to 2009 were used to calibrate the GWPR and
GLM models. The data of 2010 were used for the model validation.
The estimates of the GWPR and GLM were presented and discussed
in this section. The performances of the two models were then
compared.

5.1. GWPR calibration

The GWPRs were calibrated based on the explanatory variables
shown in Table 1. For each model, the exposure variable, i.e. DVMT,
was initially considered due to its dominate predicting influence
on crashes. Other candidate variables were analytically selected
(b) yearly DVMT in thousand by county in California.



Fig. 2. Relationship between crash count and exposure variable.
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into the model form. In this procedure, the variables were added
into the model specification one by one, while monitoring the sig-
nificance of these variables and the AICc of the model. Since one
variable could be significant in several counties while insignificant
in other counties, the rule that a variable was kept in the model if it
was significant in more than 80% of counties was used in this
study. Including insignificant variables into the model specification
was found to increase the AICc of the model. The variable selection
procedure was repeated several times. The GWPR with the small-
est AICc was considered as the final model.
5.2. GWPR estimates

The GWPR with only DVMT as the explanatory variable was cal-
ibrated initially. The distribution of parameters of DVMT over
counties is shown in Fig. 3a. It is identified that the parameters
have an obvious pattern of spatial non-stationarity. The parameter
Table 1
Descriptive statistics of countywide variables.

Variable Description

Crash response variables
Crash Fatal crash count per year

Road network
Road density Road length/area (M)a

UR percent Percent of urban road mileage
FW percent Percent of freeway mileage
PA percent Percent of principal arterial mileage
MA percent Percent of minor arterial mileage
CR percent Percent of collector road mileage
LR percent Percent of local road mileage

Traffic
DVMT Daily vehicle miles traveled (T)
Traffic intensity DVMT/road length (T)a

UT percent Percent of urban DVMT
MVR density Motor vehicle registration/area (T)
TRs percent Percent of trucks and trailers
License rate Licensed drivers/population

Socio-demographic
Area Area (M)
Pop density Population/area (T)
Male Percent of male population
Eighteen Percent of age group under 18
Sixty-five Percent of age group of 65 and older
MIC Median household income (T)
Poverty Percent of people below poverty line
Poverty18 Percent of people under 18 in poverty
UE rate Unemployment rate
RUC Rural-Urban Continuum

a M = in million, T = in thousand.
of DVMT ranges from 0.65 to 0.90. All the parameter signs are po-
sitive indicating the DVMT has positive impacts on the number of
fatal crashes per county. The positive impact of DVMT is consistent
with most previous findings (Tarko et al., 1996; Karlaftis and Tarko,
1998; Traynor, 2008; Huang et al., 2010; Hadayeghi et al., 2010a),
but contrary to a study by Aguero-Valverde and Jovanis (2006). The
local t-statistics for the parameters of DVMT are computed to
determine their significances. The results are shown in Fig. 3b.
All the county-specific parameters of DVMT are significant at a
95% confidence level. The GWPR successfully captures the spatial
heterogeneity in the relationship between fatal crashes and DVMT
which is hidden in the global GLM.

In the preliminary analysis, several GWPRs with single-category
and multiple categories of independent variables were calibrated
and evaluated. The results show that in general the models with
more variables produce smaller AICc as compared to these with
single-category variables. It suggests that the GWPRs with more
countywide predicting factors have better performances in fitting
the data, though their applications may be limited due to the prac-
tical reality of data availability in some counties or regions. In this
study, the GWPR with all categories of available variables was eval-
uated for the comparison to the GLM.

The summaries of parameter estimates in the GWPR are shown
in Table 2. The local parameters are described by the 5-number
summaries that present the minimum, lower quartile, median,
upper quartile, and maximum of values. The distributions of
parameters of predicting variables over the 58 California counties
are shown in Fig. 4. It is identified that the parameters have obvi-
ous patterns of spatial variation. For most of variables, such as the
freeway percentage, population density, percentage of age group
under 18, traffic intensity, urban traffic percentage, and percentage
of trucks/trailers, the parameters change gradually from northern
counties to southern counties. For some variables, such as the log-
arithm of DVMT, road density, and median household income, their
predicting powers on fatal crashes are more concentrated in the
central counties than the other parts.
Min Max Mean S.D.

1.25 614.25 51.62 93.25

0.07 7.67 0.74 1.10
0.00 1.00 0.35 0.31
0.00 0.05 0.02 0.01
0.00 0.12 0.05 0.03
0.01 0.20 0.09 0.03
0.06 0.36 0.21 0.06
0.47 0.76 0.63 0.06

0.17 215.75 15.44 31.97
0.30 11.19 3.52 2.89
0.00 1.00 0.65 0.24
0.00 3.82 0.18 0.53
0.15 0.60 0.39 0.11
0.47 0.91 0.69 0.09

120 51,935 6964 8038
0.00 6.67 0.25 0.90
0.48 0.64 0.51 0.02
0.14 0.33 0.24 0.05
0.08 0.25 0.13 0.04
34.44 86.83 53.33 13.46
0.07 0.22 0.14 0.04
0.02 0.10 0.05 0.02
0.05 0.23 0.09 0.03
0.00 1.00 0.64 0.48



Fig. 3. (a) Parameters of DVMT by county; and (b) pseudo-t values for parameters of DVMT by county.

Table 2
Summaries of local parameters in the GWPR.

Variable Minimum Lower
quartile

Median Upper
quartile

Maximum

Ln(DVMT) 0.996 1.010 1.020 1.029 1.037
FW percent �6.335 �6.041 �5.830 �4.605 �1.710
Road density (M)* �0.027 �0.015 �0.011 �0.010 �0.008
Pop density (M) 0.247 0.262 0.276 0.293 0.393
Eighteen 1.262 1.534 1.653 1.713 1.791
MIC (T) �0.012 �0.011 �0.010 �0.009 �0.008
Traffic intensity

(T)
�0.085 �0.079 �0.076 �0.069 �0.019

UT percent �0.457 �0.423 �0.399 �0.320 �0.050
TRs percent �0.644 �0.089 0.285 0.814 1.178
Intercept �5.460 �5.331 �4.997 �4.735 �4.292

* M = in million, T = in thousand.
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The percentage of freeway mileage in a county is negatively cor-
related with the fatal crashes. It suggests by controlling the DVMT,
freeway produces less fatal crashes than other facilities. It could be
because freeways are generally better designed and have full ac-
cess control, while the other road types have numerous intersec-
tions and experience more traffic congestions which could
increase the fatalities (Amoros et al., 2003; Huang et al., 2010).
The road density is estimated to be negatively related to the fatal
crash counts after controlling the DVMT.

The population density is positively related to the risk of fatal
crash probably because more residents in an area have more activ-
ities that could result in more fatalities. Similar results were re-
ported in several studies (Tarko et al., 1996; Hadayeghi et al.,
2003; de Guevara et al., 2004), though Noland (2008) reported an
opposite result in England. The percentage of age group under 18
has positive effects on fatal crashes since young population tend
to take more risks in travels (Quddus, 2008; Aguero-Valverde
and Jovanis, 2006; Huang et al., 2010). Higher median household
income would decrease the risk of fatal crashes. It would be ex-
pected that individuals in wealthier areas seek to avoid risky activ-
ities and generally own cars with better safety performance
(Huang et al., 2010).

Traffic intensity has negative coefficients suggesting the level of
traffic congestion is negatively related to fatal crashes, which has
also been reported in some studies (Hadayeghi et al., 2003; Noland
and Oh, 2004), though a recent study reported a positive correla-
tion (Huang et al., 2010a). The percentage of urban traffic is nega-
tively related to fatal crashes, indicating that traffic in rural area is
more likely to result in fatalities. The coefficients of percentage of
trucks/trailers vary from negative to positive. The change of coeffi-
cient sign has been commonly observed in the application of the
GWR or GWPR (Zhao et al., 2005; Wheeler and Calder, 2007; Had-
ayeghi et al., 2010a). The local t-statistics are computed and the re-
sults show that the negative coefficients are not significant at a 90%
confidence level. Thus, more fatal crashes occur in counties with
larger percentages of trucks and trailers.

5.3. GLM estimates

The GLMs with the random component follows a NB distribu-
tion were calibrated based on the same dataset. Initially, a GLM
with only the DVTM as the explanatory variable was calibrated.
The parameter is estimated to be 0.80 which is about the average
value of parameters in the GWPR in Fig. 3a. Then a GLM with all
variables contained in the GWPR were calibrated. The model esti-
mates are shown in Table 3. Most of variables are significant at a
90% confidence level. A comparison between the two GLMs shows
that the model with more explanatory variables has larger LR chi2

and Pseudo R2 and a smaller AIC value, which indicates a better
statistical performance. The GLM with more variables was found
to produce more accurate predictions of fatal crashes than the
GLM with only DVMT.

In the GLM estimates in Table 3, the DVMT is the exposure var-
iable in the GLM and is positively related to the fatal crashes. The
percentage of freeway mileage has a negative impact on fatal
crashes, and the total road density has a negative impact. The pop-
ulation density as well as the percentage of age group under 18 are
positively related to crash risks. The median household income has
a negative impact on crash risks. By controlling the exposure, the
traffic intensity is estimated to be negatively related to crash
counts. A higher percentage of urban traffic reduces the fatal
crashes. The percentage of trucks/trailers is positively related to
fatal crashes in a county.



Fig. 4. Parameters of predicting variables by county in the GWPR.

Z. Li et al. / Safety Science 58 (2013) 89–97 95
5.4. Comparison between GWPR and GLM

The parameter estimates in the GLM were compared to these in
the GWPR. The signs of parameters of predicting variables were
found to be consistent between the two models. The difference be-
tween the two models is the GLM has a constant parameter for
each variable while the GWPR has spatially varying parameters
for each variable. The parameter of a variable in the GLM falls into
the range of parameters of the same variable in the GWPR, indicat-
ing the parameter estimated in the GLM generally represents the
average effect of the variable on fatal crashes in all counties. Thus,
using the GLM, one crash prediction model was developed for all
counties. While using the GWPR, different crash prediction models
were developed for individual counties.

The predicting performances of the GLM and GWPR were com-
pared. Using the GLM and GWPR calibrated in the above sections,
the fatal crash counts of year 2010 in the 58 California counties
were predicted for model validation. The distributions of residuals
of predictions in the two models are shown in Fig. 5. It is observed
that the residuals in the GWPR are obviously smaller than these in
the GLM. The measures of goodness of fit introduced in Section 3.3
were computed for the two model predictions. The results are
shown in Table 4. Both the MAD and MSPE in the GWPR are less
than these in the GLM. The MAD and MSPE in the GWPR are re-
duced by 23.42% and 66.11% respectively as compared to the
GLM. The results indicate that the GWPR produces more accurate
predictions for fatal crash counts in individual counties than does
the GLM. By capturing the spatial heterogeneity in the data, the
variability of fatal crashes over counties is better predicted in the
GWPR.

Both the GWPR and GLM assume the error term is indepen-
dently distributed. If the spatial autocorrelation exists in the er-
ror term, the underlying model assumption is violated and
biased estimates may be produced (Leung et al., 2010). In this



Table 3
Results of parameter estimates in the GLM.

Variable Coeff. S.E. t p-
Value

95% Conf.
interval

Ln(DVMT) 1.022 0.054 18.960 <0.001 0.916 1.127
FW percent �3.682 2.011 �1.782 0.083 �7.704 0.341
Road density (M)a �0.025 0.009 �2.760 0.006 �0.042 �0.007
Pop density (M) 0.399 0.000 4.400 <0.001 0.000 0.001
Eighteen 1.751 0.804 2.180 0.030 0.174 3.327
MIC (T) �0.010 0.004 �2.700 0.007 �0.016 �0.003
Traffic intensity

(T)
�0.046 0.035 �1.300 0.192 �0.114 0.023

UT percent �0.234 0.128 �1.792 0.085 �0.490 0.022
TRs percent 0.593 0.758 0.780 0.434 �0.892 2.078
Intercept �5.250 0.704 �7.460 <0.001 �6.631 �3.870

Statistics:
Log likelihood: �166.9232.
LR chi2(8): 241.69.
Prob > chi2: <0.001.
Pseudo R2: 0.4199.

a M = in million, T = in thousand.

Table 4
Measures of goodness of fit for the GWPR and GLM.

Measures of goodness of fit MAD MSPE

GWPR 13.14 516.61
GLM 17.16 858.12
Difference 23.43% 66.11%

Table 5
Moran’s I statistics for residuals of predictions in the GWPR and GLM.

Model Global Moran’s I Variance Z Score p-Value

GWPR 0.0113 0.0028 0.5496 0.5826
GLM 0.2029 0.0028 4.1677 <0.001
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study, we computed the Moran’s I statistics to quantify the spa-
tial correlation in the residuals of predictions in the GWPR and
GLM. The results are shown in Table 5. In the GWPR, the spatial
correlation in the residuals of predictions of fatal crashes over
counties is not significant at a 90% confidence level. However,
in the GLM, a significant spatial correlation is found in the resid-
uals of predictions at a 99.9% confidence level. The tests of Mor-
an’s I statistics suggest that because the GWPR accounts for the
spatial heterogeneity in the county level data, the residuals of
crash counts in the GWPR are less spatially correlated as com-
pared to the GLM.

We also examined the spatial correlation for the fatal crashes.
It is found that the crash counts are spatially correlated at a
99.9% confidence level. It suggests using the GWPR, the spatial
correlation of fatal crashes is explained by the county-specific ef-
fects of predicting variables included in the model form. Thus,
the residuals of predictions of fatal crashes are no longer spa-
tially correlated. This finding is quite obvious by comparing the
spatial distribution of fatal crashes in Fig. 1a and the residuals
in Fig. 5a. The above analysis suggests that the GWPR is an
appropriate technique for the modeling of the county-level crash
data in California.
Fig. 5. (a) Residuals of fatal crashes by county in the GWPR;
6. Summary and conclusions

This study evaluated the application of the GWPR modeling
technique for the county-level crash data analysis. Based on the
data collected from the 58 counties in the state of California, the
GWPR was calibrated to explore the spatially varying relationships
between fatal crashes and explanatory variables. A traditional GLM
was also calibrated based on the same dataset. The GWPR and GLM
were used to predict the fatal crashes in individual counties. The
predictive performances of the two models were compared and
the spatial correlations in the residuals of predictions were
examined.

The results showed that the GWPR successfully captured the
spatially non-stationary relationships between fatal crashes and
predicting factors at the county level. The parameters of variables
in the GWPR varied spatially, suggesting the effects of predictors
on fatal crashes were different between counties. After considering
the spatial heterogeneity in the county-level data, the GWPR out-
performed the traditional GLM in predicting the fatal crashes in
individual counties. The Moran’s I tests showed that the GWPR
remarkably reduced the level of spatial correlation in the residuals
of predictions of fatal crashes over counties as compared to the
GLM. This study suggested that the GWPR was more appropriate
than the GLM for the crash frequency modeling based on the
county level data with a small sample size.

The GWPR estimated the parameters of predicting variables for
each county. Thus, the crash prediction model was developed par-
ticularly for every individual county. These crash prediction mod-
els are useful tools in evaluating the normal safety levels and
and (b) residuals of fatal crashes by county in the GLM.
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forecasting the expected number of crashes in planning years in
the counties of California. These models are also important in eval-
uating the effectiveness of policies or countermeasures applied in
particular counties. The GWPR has an advantage that the technique
has been built in the ‘‘GWRx3.0’’ software package. The findings of
this study can help advance the progress of county-level transpor-
tation projects that incorporate safety into traditional planning
process.

Although the GWPR is an excellent technique for predicting the
number of county-level crashes, the calibrated models are not spa-
tially transferable since they produce a set of local parameters for a
specific geographic region. It indicates that most jurisdictions need
to develop their own GWPRs for local regions. Besides, it would be
interesting to compare the performance of a GWPR to other types
of models such as the ransom parameter model and Bayesian spa-
tial model which can also account for the spatial heterogeneity and
spatial correlation in dataset. New findings are expected from the
comparison between different models for the crash analysis at
the county level. The authors recommend future studies could fo-
cus on these issues.
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