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Abstract 

Red light running (RLR) problem has been recognized as a significant safety problem in 
California as well as throughout the United States. This paper follows a two step process 
to develop enhanced signal timing models for possible reduction of RLR. In the first step, 
field data are collected with one-second resolution and discrete choice models are 
estimated to determine the significant influencing factors of RLR; in the second step, 
based on the findings from the first step, T7F software package as well as custom 
designed programs is used to find the enhanced signal timing plans that can potentially 
reduce RLR, while at the same time maintain the commonly used signal control 
objectives, such as intersection delay. Future research direction is also discussed.  
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Executive Summary 

Red-light running (RLR) is defined as entering and proceeding through a signalized 

intersection after the signal has turned red. Over the years RLR has become a national safety 

problem. Based on data provided by the Federal Highway Administration (FHWA), in Year 

2001, there were almost 218,000 RLR crashes, which result in as many as 181,000 injuries 

and 880 fatalities. The annual economic loss is estimated to be $14 billion. 

 

The objectives of this study are two-fold: first to identify and evaluate potential modifications 

to the signal timing schemes so that they will provide more safety. The second objective is to 

develop “adaptive” red-light running collision avoidance algorithm which is able to react to 

the predicted RLR collision in real-time. 

 

RLR is influenced by a variety of factors, including driver behavioral factors (human factors), 

intersection characteristics, policy and regulatory factors. This report focuses on the 

operational factors, partly because of scarce data and information regarding behavioral factors, 

but primarily because it holds the most convenient set of countermeasures. 

 

The research team used detailed traffic and signal timing data to isolate significant and 

substantial traffic operations factors and to study the impact of a platoon arriving to an 

intersection within different phases of the traffic cycle. A discrete choice model was 

developed from loop detector and signal timing data collected from the intersection of El 

Camino Real and 28t h Avenue in San Mateo, CA. 

 

The dependent variable used is an indicator variable. When the cycle has at least one RLR, the 

dependent variable takes the value of “1”, otherwise, the variable equals to “0”. The 

independent variables were selected based on the assumptions of this study and findings of 

previous studies. 
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Several variables were shown to be significant. Progression ratio was found to reduce the RLR 

probability by 9.3% for phase two (northbound direction) and by 8.1% reduction for phase six 

(southbound direction). The green arrival flow increases the RLR probability by 12% for 

phase two and by 9.3% for phase six. The arrival flow during yellow is found to be the most 

substantial variable and increases RLR probability by 32.7% for phase two and by 11.7% for 

phase six. The number of vehicles in a cluster before the onset of yellow has the least impact 

on RLR probability, which increases by less than 0.5% for both phases.  

 

The cycle based data analysis suggests that the arrival flow during the yellow phase is a 

significant influencing factor of RLR. This finding motivated the next step of this study that 

aims at determining if shifting the signal offsets can produce reduced yellow flow without 

sacrificing significantly the intersection delay or efficiency. 

 

To study the dynamics between signal timing offsets, intersection delay, and yellow arrival 

flow and platoons, we developed a TRANSYT-7F model. The TRANSYT-7F traffic network 

study software is chosen for this analysis, mostly for its ability to model platoon dispersion 

and to simulate traffic flow under predetermined signal timing plans 

 

The main insight obtained from this analysis is that there are situations when shifting t he 

offsets can reduce yellow arrival with little change in intersection delay. Based on this insight 

a simple optimization algorithm to find the offset for an intersection that optimizes the whole 

route was developed. The algorithm is iterative and it finds the optimal offset for the first 

intersection while keeping all other offsets constant, and then performs the same at all other 

intersections iteratively. 

 

A case study of a five intersection corridor was used to evaluate the performance of the 

proposed algorithm. The result shows that yellow arrival in the section decreased by 37.5%, 

delay increased by 1.8%, and the total cost (which is a weighted sum of yellow arrival and 

delay) for this section decreased by 21%. 
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To further validate the optimization model, we also evaluated its performance on an extended 

section along the same corridor that includes 10 intersections. The result for this extended 

corridor shows a 17.9% decrease in yellow arrival, a 1.2% increase in delay, and a 7.9% 

decrease in total cost. 

 

Under this project, a signal-cycle-based data analysis was performed to study the contribution 

factors of red-light -running occurrences. This analysis used second-by-second signal phasing 

and timing data together with loop data. It identifies the yellow arrival flow, i.e., number of 

vehicles arrived at intersection during the yellow phase, as the most significant factor on RLR 

occurrences. The importance of this finding is that the yellow arrival is a controllable 

parameter of traffic operation and therefore it can be used as a safety measure in the design of 

signal timing. Inspired by this finding the research team has proposed a proactive signal 

timing optimization concept. The preliminary study demonstrated the potential of this timing 

optimization concept in significant reducing RLR occurrences without compromising 

intersection efficiency. 

 

As a continuation of this project (TO5210), the research team is performing more detailed 

study, under Task Order 6210. The objectives are 
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1 INTRODUCTION  

 

Red-light running (RLR) is defined as entering and proceeding through a signalized 

intersection after the signal has turned red. Over the years RLR has become a national safety 

problem. Based on data provided by the Federal Highway Administration (FHWA), in Year 

2001, there were almost 218,000 RLR crashes, which result in as many as 181,000 injuries 

and 880 fatalities. The annual economic loss is estimated to be $14 billion [1]. 

 

Intersections, which provide the environment where these incidents take place, are controlled 

by traffic signals, which are managed by signal timing schemes. Signal timing schemes are 

usually optimized to minimize traffic delay and the number of stops per vehicle, within a 

corridor. However, they don’t always consider the safety aspect of traffic, such as cutting off a 

platoon with the onset of red. 

 

The objectives of this study are two-fold: first to identify and evaluate potential modifications 

to the signal timing schemes so that they will provide more safety. The second objective is to 

develop “adaptive” red-light running collision avoidance algorithm which is able to react to 

the predicted RLR collision in real-time. Both objectives require significant data collections 

and analysis along with identifying surveillance, hardware/software, and communication 

requirements that will lead to develop and implement a field testing system.  

 

This report serves as the final report for PATH Task Order 5210. This research project is 

continued under PATH Task Oder 6210, and the findings beyond TO5210 will be 

documented in the final report for TO6210. 
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2 RED LIGHT RUNNING FACTORS 

 

RLR is influenced by a variety of factors, including driver behavioral factors (human factors), 

intersection characteristics, policy and regulatory factors.  

 

2.1 Human Factors 

No specific category of red-light runners has been identified. However, the most frequent 

violators are likely to be young, and have previous traffic convictions and are usually alone in 

the car [2]. Studies have also shown that being in a rush typically results in drivers taking 

higher risks. According to a FWHA survey [3], 48% of red light runners said they ran lights 

because they were in a hurry. 

 

Many researchers have investigated drivers’ decision-making processes at signalized 

intersections. The probability of a driver stopping in response to the onset of a yellow 

indication was discussed in a variety of literature. For instance, a study by Olson and Rothery 

[4] indicates that a driver’s probability of stopping is based on the speed and distance to the 

stop line, the driver’s perception of his/her ability to stop and the degree of comfort associated 

with the stop. 
 

2.2 Intersection Characteristics 

Three major categories of environmental factors were studied in past studies: traffic flow, 

intersection geometry and signal visibility, and signal timing. 

 

2.2.1 Traffic Flow 

The most often studied parameter in the traffic flow category is average daily traffic (ADT). 

Several studies have shown that increased ADT on the through direction increases RLR and 

that increased ADT on the crossing approaches increases the probability for collision (e.g., [5], 

[6]). Kamyab et al. reported the relationship between the occurrence of RLR and traffic flow 
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rates based on 1,242 hours of observation at 12 intersections in Iowa [7]. Their results indicate 

that RLR increases at a rate of about 3.0 violations per 1,000 vehicles per hour in urban areas.  

 

2.2.2 Intersection Geometry and Signal Visibility 

Studies have shown that every additional lane on the main approach to an intersection 

increases the probability of a vehicle running the red light on a minor street by 7% [5]. The 

grade of an intersection approach affects drivers’ probability of stopping. Drivers on 

downgrades are less likely to stop than drivers on level or upgrade approaches (at a given 

travel time to the stopline) [8]. Poor signal visibility could also affect the RLR rate. According 

to a survey study [1], 40 percent of red-light violators claimed that they did not see the signal 

or its indication. Although it is not likely that all the claims are true, there probably are 

situations where a more visible signal would not have been violated.  

 

2.2.3 Signal Timing 

Signal timing is also a frequently studied factor in RLR research. Studies have shown that 

increased all-red intervals increase RLR while not necessarily increasing RLR collisions [9]. 

In addition, researchers have found that the violation frequency is positively correlated with 

the number of yellow signal presentations [10]. It has also been found that long cycle length 

reduces RLR [8]. Van der Horst and Wilmink [12]  showed that yellow and all-red intervals 

have a direct effect on the frequency of RLR -- they suggest that setting the yellow interval 

longer than 3.5 seconds is of great significance in reducing RLR frequency and that setting all-

red intervals close to values proposed by the Institute of Transportation Engineering (ITE) can 

reduce violation rates and potential right-angle conflicts. 

 

Van der Horst and Wilmink [12] reported that drivers approaching an actuated intersection are 

less likely to stop than if they are approaching a fixed-timing intersection. This finding 

suggests that drivers learn which signals are actuated and then develop an expectation of 

service as they travel through the detection zone. The authors extrapolated this finding to 

drivers traveling within platoons through a series of coordinated signals. Drivers in a platoon 

seem to have an expectation that they can travel without interruption through successive 
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signals. Their expectancy is that each signal they approach will remain green until after they 

pass through the intersection. Their desire to stay within the platoon makes them less willing 

to stop at the onset of the yellow indication.  

  

2.3 Policy and Regulatory Factors 

Policy and regulatory factors include legislation and education programs that aim to reduce 

RLR. Red-light photo enforcement has been shown to reduce RLR by 23 to 70 percent and 

RLR collisions by 22 to 40 percent [10]. Regarding legislation, it has been shown that 

compliance with the ITE formulation for calculating the yellow interval can reduce the RLR 

frequency [7]. 
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3 STATISTICAL ANALYSIS OF RED-LIGHT RUNNING FACTORS 

 

As described in the previous chapter the phenomenon of Red Light Running (RLR) is 

influenced by a variety of factors. This report focuses on the operational factors, partly 

because of scarce data and information regarding behavioral factors, but primarily because it 

holds the most convenient set of countermeasures. Therefore, the purpose of this task is to 

study what traffic related characteristics are significant to RLR and to estimate their impact. 

 

Since RLR violations occur in a relatively small time-space region, a fruitful analysis of RLR 

would require detailed data of the relevant region. The data regularly collected by traffic 

agencies is at best aggregated over five-minute intervals and rarely possess the level of detail 

required. The aggregated information that is available can reveal important factors associated 

with RLR, such as average daily traffic (ADT) [5, 6]. However, it is often insufficient for in-

depth analysis that leads to the development of advanced road safety measures. 

 

The risk for RLR is not constant within a traffic signal cycle. Using detailed data we can break 

a traffic signal cycle up into three sections associated with different RLR probability. First is a 

section when there is no probability of RLR (most of the green phase), followed by a section 

with the highest probability of RLR (the yellow phase and a few seconds immediately before 

and after it), and finally is a section when the probability of RLR is relatively small (most of 

the red phase). Therefore, within every cycle there is only a short duration when risk for RLR 

is high. Since the risk of RLR is not constant within a traffic signal cycle, the time an 

approaching platoon is truncated can also influence RLR 

The research team used detailed traffic and signal timing data to isolate significant and 

substantial traffic operations factors and to study the impact of a platoon arriving to an 

intersection within different sections of the traffic cycle. The benefits of understanding these 

relationships will be utilized to the development of appropriate RLR countermeasures. 

 

Under this task, an in-depth analysis of contributing factors to RLR was performed. In the 

following of this Chapter, the field data collection effort is presented first, and then followed 
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by a discrete choice model analysis of the data that results in the determination of the 

contributing factors to RLR as reflected in the collected data set. 

 

3.1 Field Data Collection 

The data for the analysis in this section is based on loop detector and signal timing data 

collected from the intersection of El Camino Real and 28t h Avenue in San Mateo, CA. This is 

a T-intersection, fitted with advance and departure loop detectors and a semi-actuated traffic 

signal controller and is shown in Figure 2-1 below. The data were collected between 7AM and 

8PM over a period of one month in October, 2004, which consist of 7,357 signal cycles. The 

data are in one second increments, and include vehicle count and vehicle occupancy along 

with the corresponding signal phasing and timing data. 

 

 

 
Figure 2-1 Ariel Photo of El Camino Real and 28th Avenue 
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3.2 Data Analysis 

3.2.1 Definition of a Sample 

RLR occurs under specific momentary circumstances. Therefore, to capture the relevant 

factors, we need to analyze the smallest relevant time frame. We define the time around the 

yellow signal phase as the section with the highest probability for RLR. Cycle based analysis 

is appropriate since each cycle includes one high risk section. Furthermore we assume that 

characteristics within the phases prior to the onset of the red signal influence RLR more than 

those within cycles. Consequently, in this study every cycle represents a sample, and all 

variables are collected or averaged over a cycle. To evaluate the impact of the different phases 

of the traffic signal, each sample has data for the green, yellow and red signal phases. The 

analysis is performed separately for each of the main traffic directions along the corridor. 

 

3.2.2 Dependent Variable 

The dependent variable used is an indicator variable. When the cycle has at least one RLR, the 

dependent variable takes the value of “1”, otherwise, the variable equals to “0”. The data for 

the dependent variable is collected from departure loops which are located at the stop bar. The 

departure loops reflect the outcome of the cycle in terms of RLR and correspond to the legal 

definition of RLR. 

 

3.2.3 Independent Variables 

The independent variables were selected based on the assumptions of this study and findings 

of previous studies described before. The data for the independent variables is collected from 

the advance loops of the two center lanes which are located 60 meters upstream of the stop bar 

and reflect causal factors for the dependent variable. The independent variables include the 

arrival flows during the different signal phases and other additional variables previously 

shown to impact RLR, such as progression ratio, cross-traffic and termination of the green 

signal phase. Since second-by-second data is used, estimations of occupancy from the loop 

detectors have significant estimation errors; as a result, reliable estimations for speed are not 

obtainable and are not included as part of the analysis. 
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We also compiled variables that represent the platoons in a traffic flow. Vehicles following 

with headways of two seconds or less are defined as a cluster, and the proportion of clustered 

vehicles within the different signal phases is calculated. The percentage of clustered vehicles 

within the flow that arrived during the yellow phase was excluded from the analysis, since it is 

conceptually correlated with the yellow signal phase arrival flow. Furthermore, we calculated 

the number of clustered vehicles behind and ahead of the advance loop at the onset of the 

yellow signal. The definitions of the included variables are listed in Table 2-1. 
Table 2-1 Independent Variables Included in the Analysis 

Variable name Variable ID Variable Description 

Progression Ratio G_COUNT_R Total arrivals to the advance loop, during the green phase, 
divided by the total arrivals to the advance loop during cycle.  

Green Flow GRN_FLOW The number of vehicles crossing the advance loops, during 
the green phase. 

Yellow Flow YLW_FLOW The number of vehicles crossing the advance loops, during 
the yellow phase. 

Red Flow RED_FLOW The number of vehicles crossing the advance loops, during 
the red phase. 

Termination of the Green GRN_TER Dummy variable indicating reason for termination of the 
green phase (gap-out, max-out, force-off). 

Cross Traffic CRS_EGRN The proportion of green time provided to the cross traffic 
Time of Day TOD Dummy variable indicating time of day, (AM, off peak, PM). 
Green Clustering GRN_CLUS Percentage of clustered vehicles of the green flow 
Red Clustering RED_CLUS Percentage of clustered vehicles of the red flow 
Clustered Vehicles 
Before Yellow Onset 

N_BF_O_Y The number of clustered vehicles ahead of the advance loops 
when a cluster is present, at the onset of the yellow signal 

Clustered Vehicles After 
Yellow Onset 

N_AF_O_Y The number of clustered vehicles behind the advance loops 
when a cluster is present, at the onset of the yellow signal 

 

3.2.4 Statistical Analysis Method 

Because of the binary nature of the dependent variable, a binary logistic regression model was 

used to estimate the parameters [13]. The probability for RLR (dependent variable) is given 

by: 

          2-1 

And the logit link function of the logistic regression which calculates the changes in the log-

odds of the dependent variable is given by: 
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     2-2 

where  are the independent variables and  are the estimated parameters, which are the 

logits of independent variables. A positive value of  means that higher values of the 

corresponding variable increases RLR, while a negative  means that higher values the 

variable decrease RLR.  

 

To further interpret the logit of an independent variable we convert it to its odds-ratio using 

 which tells us what happens to the odds-ratio of the dependent variable when we 

increase  by one unit, keeping all other variables constant.  Once we know how the odds-

ratio for the dependent variable change, in response to one unit increase of an independent 

variable we define the changed odds-ratio as . Now we can extract the new 

probability, , for the dependent variable in response to one unit increase of an 

independent variable by solving: 

        2-3 

and obtain the change in probability as a result of one unit change in an independent variable. 

This way we can also estimate what impact the significant variables have on RLR and focus 

our study on the substantial ones. 

 

3.3 Findings 

3.3.1 Descriptive statistics 

The analysis is performed separately for each of the main directions on the corridor, namely 

phase two (Northbound) and phase six (Southbound). Descriptive statistics for the data reveal 

the following characteristics about the studied intersection: 

• RLR is observed in 12% of the signal cycles of phase two and in 5% of phase six; 

• Both phases are characterized by relatively low traffic volume, average total flow is 

about 381 vph/lane for phase six and about 411 vph/lane for phase two; 
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• The maximum flow for phase six is about 1,800 vph/lane, while for phase two, it is 

only 1,044 vph/lane; 

• The progression ratio for the synchronized phase two is 88% as opposed to a lower 

75% for phase six; 

• Both phases have about 69% of clustered vehicles during green; 

• Regarding arrival flow during the yellow phase, some cycles are observed with as 

much as three vehicles per lane for four second of yellow on phase two and as much 

as four vehicles per lane on phase six. 

 

3.3.2 Regression estimates for Phase two 

The logistics regression analysis is preformed using the Statistical Package for the Social 

Sciences (SPSS) software [14]. The estimates obtained by the regression for phase two are 

shown in Table 2-2. 
Table 2-2 Parameter Estimates for the Selected Model (Southbound) 

Variable name B S.E. Wald df Sig. Exp(B) 
Phase two 

GCOUNT_R -1.596 .591 7.304 1 .007 .203 
GRN_FLOW 1.676 .371 20.403 1 .000 5.342 
YLW_FLOW 3.556 .202 309.734 1 .000 35.009 
RED_FLOW -1.623 .829 3.831 1 .050 .197 
CRS_EGR -1.180 .655 3.250 1 .071 .307 

N_BF_O_Y .024 .011 4.831 1 .028 1.024 
Constant -1.273 .556 5.233 1 .022 .280 

 

For phase two the log likelihood (-2LL) of the chosen model is 4937.6 as opposed to the 

5502.3 original log likelihood. Six variables are found to be significant and the following is 

observed: 

• Higher progression ratios correspond to lower probability of RLR; 
• Higher flows during the green interval increase the probability of RLR; 
• Higher flows during the yellow interval increase the probability of RLR; 
• Higher flows during the red interval decrease the probability of RLR (This result 

makes sense if we remember that the flows are calculated roughly four seconds away 
from the stop bar. Therefore the red flows include vehicles arriving four seconds or 
more after the red and therefore are unlikely to run the light); 

• Higher cross traffic corresponds to lower probability of RLR; 
• Higher numbers of clustered vehicles ahead of the arrival loop at onset of yellow 

increase the probability of RLR. 
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3.3.3 Regression estimates for Phase six 

The estimates obtained by the regression for phase six are shown in Table 2-3. 
Table 2-3 Parameter Estimates for the Selected Model (Northbound) 

Variable name B S.E. Wald df Sig. Exp(B) 
Phase six 

GCOUNT_R -1.199 .406 8.708 1 .003 .301 
GRN_FLOW 1.369 .348 15.487 1 .000 3.931 
YLW_FLOW 1.642 .134 149.528 1 .000 5.167 
RED_CLUS .508 .209 5.898 1 .015 1.662 
N_BF_O_Y .028 .012 5.228 1 .022 1.028 

Constant -3.180 .318 99.751 1 .000 .042 
 

For phase six the log likelihood (-2LL) of the chosen model is 2885.8 as opposed to the 

3124.5 original log likelihood. Five variables are found to be significant and the following is 

observed: 

• Higher progression ratios correspond to lower probability of RLR; 

• Higher flows during the green interval increase the probability of RLR; 

• Higher flows during the yellow interval increase the probability of RLR; 

• Higher numbers of clustered vehicles ahead of the arrival loop at onset of yellow 

increase the probability of RLR; 

• Higher numbers of clustered vehicles during the red interval increase the probability of 

RLR. 

 

Comparing both phases we observe that four of the five variables were found to be significant 

for phase six are the same as the ones for phase two (progression ratio, yellow flow, green 

flow and clustered vehicles ahead). Red flow and cross traffic are not significant. However, 

red clustering is significant for phase six. 
 

3.3.4 Impact of significant variables 

We assumed the variables found to be significant on both directions (phase two and phase six) 

represent characteristics which are less sensitive to individual intersection design and 

evaluated their impact on RLR probability. The changes of probability for RLR under 

different values of the variables are estimated using the odds ratio. To compare the impact 
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among the significant variables, we calculated how the RLR probability changes when we 

change the variables from their average observed value to their maximum observed value. The 

first benefit of this technique is that the result is unrelated to the units of each variable and 

RLR probability is evaluated based on a range that represents reasonable values to the extreme 

values of each variable. Furthermore, we are predicting a change in the probability within the 

observed range for each variable. 

 

The change in probabilities for the progression ratio is a 9.3% reduction in RLR probability 

for phase two, and an 8.1% reduction for phase six. The green arrival flow increases the RLR 

probability by 12% for phase two and by 9.3% for phase six. The arrival flow during yellow is 

found to be the most substantial variable and increases RLR probability by 32.7% for phase 

two and by 11.7% for phase six. The number of vehicles in a cluster before the onset of yellow 

has the least impact on RLR probability, which increases by less than 0.5% for both phases. 

These findings support our assumption about the high risk section for RLR around the yellow 

signal and that increased flows during the yellow have a greater influence on RLR than the 

flows during the green. 

 

3.3.5 Divide the high risk to two sections 

To further look into the area around the yellow interval we divided the time around the yellow 

interval to four sub-sections and collected the arrival flows for each of these sub-sections. The 

definitions of the included variables are listed in Table 2-4. 

 
Table 2-4 Additional Variables Included in the Sub-Section Analysis 

Variable name Variable ID Variable Description 
Last two seconds of green G_FLW_2 The number of vehicles crossing the advance loops, during 

the last two seconds of the green phase. 
First two seconds of yellow Y_FLW_02 The number of vehicles crossing the advance loops, during 

the first two seconds of the yellow phase. 
Last two seconds of yellow Y_FLW_24 The number of vehicles crossing the advance loops, during 

the last two seconds of the yellow phase. 
First two seconds of red R_FLW_02 The number of vehicles crossing the advance loops, during 

the first two seconds of the red phase. 
 

We have to keep in mind that the data for these variables originates from the advance loops 

which are about four seconds of travel time from the stop bar. Therefore, a vehicle crossing 
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the advance loop during the first two seconds of red would arrive to the stop bar about six 

seconds into the red. 

 

We used SPSS to perform another logistics regression analysis for each phase and t he 

estimates obtained by the regression for phases two and six are shown in Table 2-5. 

 

 

 
Table 2-5 Parameter Estimates for the Sub-Section Analysis 

Variable name B S.E. Wald df Sig. Exp(B) 
Phase six 

G_FLW_2 0.315 0.061 26.320 1 .000 1.371 
Y_FLW_02 0.538 0.053 102.995 1 .000 1.713 
Y_FLW_24 0.222 0.058 14.586 1 .000 1.249 
RED_CLUS 0.910 0.181 25.184 1 .000 2.485 

Constant -3.814 0.118 1048.470 1 .000 0.022 
Phase two 

G_FLW_2 0.460 0.055 69.719 1 .000 1.584 
Y_FLW_02 1.135 0.062 331.455 1 .000 3.112 
Y_FLW_24 0.527 0.084 39.378 1 .000 1.694 

Constant -2.529 0.048 2768.370 1 .000 0.080 
 

Looking at the regression results we can see that for both phases the coefficient estimated for 

Y_FLW_02 was higher than its adjacent sub-sections (phase two-3.112, phase six-1.713). 

Furthermore, the coefficients estimated for the G_FLW_2 and Y_FLW_24 for each phase 

have similar values (1.584 vs. 1.694 and 1.371 vs. 1.249). The findings reveal that within the 

eight seconds around the yellow signal, the arrival flow during the 2nd two seconds of the 

yellow has the most substantial impact on RLR probability, while the adjacent sub-secti ons 

are somewhat symmetric around it. 



14 
 

4 PROACTIVE SIGNAL TIMING 

 

4.1 Background 

The cycle based data analysis discussed in the previous Chapter suggests that the arrival flow 

during the yellow phase is a significant influencing factor of RLR. This finding prompts a 

study that aims at determining if shifting the signal offsets can produce reduced yellow flow 

without sacrificing significantly the intersection delay or efficiency.  

 

Traffic signals are designed primarily to improve safety and efficiency of traffic. A study by 

Shinar et al. [12] shows that accommodating efficiency can many times also have safety 

benefits. The study showed that in synchronized corridors, the odds of running the red light 

are a 1/7 of the odds in non-synchronized corridors. 

 

Advanced detection systems can also accommodate both safety and efficiency through the use 

of actuated signals [15]. However, during high volume conditions it is sometimes not possible 

to find large gaps so the green is extended until it is maxed out. The max-out termination 

compromises the safety benefits of the advanced detection system by ending the phase 

regardless of vehicles in the dilemma zone. Bonneson et al. [6] have studied this problem and 

have proposed and developed an alternative Detection Control System (D-CS) for providing 

dilemma zone protection. The system differs from the traditional advance detector system 

because it predicts the best time to end the major-road through phase using an external 

computer to process vehicle speed and length information. 

 

In addition to providing drivers with additional dilemma zone protection, recent studies have 

developed algorithms to detect in real time a potential RLR related collisions. A study by 

White and Ferlis [14] has suggested an algorithm to identify inattentive violators. The model 

assumes that inattentive violators act identically to attentive drivers with a green signal. 

Therefore, the algorithm is based on comparing velocity and acceleration data of vehicles 

traveling at free-flow speeds through an intersection with data from alert motorists stopping 

for a red signal on the same approach. 
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4.2 An Enhanced Traffic Signal Optimization Model 

4.2.1 The TRANSYT-7F Model 

To study the dynamics between signal timing offsets, intersection delay, and yellow arrival 

flow and platoons, we developed a TRANSYT-7F model. The TRANSYT-7F traffic network 

study software is chosen for this analysis, mostly for its ability to model platoon dispersion 

and to simulate traffic flow under predetermined signal timing plans [17]. 

 

To construct the model, flows and intersection geometry from a five intersection section on El 

Camino Real in San Mateo, CA are collection. The section includes five intersections, Jordan 

(1), Showers (2), San Antonio (3), Del Medio (4) and Los Altos (5), as seen in Fi gure 3-1 

below. The flows observed on the arterial range from 1,300vph to 1,800vph. San Antonio is a 

critical intersection for this section and demonstrates residual queues which enable us to study 

different traffic patterns. 

 

 

 
Figure 3-1 Ariel Photo of El Camino Real between del Medio and Jordan 
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Custom-designed software is also developed to evaluate the outcome of changing the offsets. 

The software modifies the offsets, generates batch runs of the TRANSYT-7F model, and 

calculates the delay and yellow arrival flow for individual intersections or for the whole 

section. The outputs and diagrams are generated as a spread sheet. 

 

Each of the major directions of the corridor at each intersection is defined as a link and 

separate outputs were generated for each link. Figure 3-2 shows the delay and yellow arrival 

flow under different offsets for the northbound direction on node 4 (link 401). 

 

 
Figure 3-2 Delay and Yellow Arrival Flow as a Function of Offset 

 

In Figure 3-2, the horizontal axis represents the offsets, in seconds, for the current link. Since 

the cycle length is 120 seconds, the offsets range between 0 and 115 in 5 second increments. 

Each offset represents the outcome of a separate TRANSYT-7F analysis and the values 

associated with it are on the vertical axis.  

 

The bars that correspond to the left-hand-side vertical axis represent the flow during the 

yellow phase. The units for this axis are vehicles per hour over all lanes. We can observe that 

different yellow flows are obtained for different offsets. The line corresponds to the right-

hand- side vertical axis and represents the link delay. The units for the delay are vehicle-hours 

per hour. “┴” signs in the figure are a coarse outline representing when the through-flow 

platoon is truncated by the yellow signal. The “┴” sign to the right of each offset represent s 
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the through-flow vehicles that are truncated and t he “┴” sign to the left represents the through 

flow vehicles that are let through by the signal. For link 401 about half of the platoon is 

truncated wit h an offset of 20 seconds, while only about 20% is cut off with an offset of 40 

seconds. 

 

Figure 3-3 provides an intuitive explanation of the changes shown in Figure 3-2 and a 

demonstration of the potential benefits of shifting offsets. Each of the diagrams in Figure 3-3 

(a-d) has below it a time-space diagram corresponding to the offset marked by the vertical 

gray band. The time-space diagram shows on the time axis the red signal (black stripe) and the 

green signal (empty spaces between black stripes) for all nodes marked 1 to 5 on the vertical 

axis. This example is again for link 401. Two thin lines on each time-space diagram roughly 

represent the through-flow platoon traveling from node 3 to node 4. The line on the left 

represents the first vehicles in the platoon while the line on the right represents the last 

vehicles of the platoon. In each of the figures, we increase offset of node 4 and observe how it 

affects the platoon coming from node 3. 
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Figure 3-3 Delay and Yellow Arrival Flow along with Time-Space Diagrams 

In Figure 3-3(a) with an offset of zero, we can see that only the very first vehicles in the 

platoon pass through the intersection, thus relatively low yellow flow is observed. 

Furthermore, since most of the platoon is stopped at this link, all vehicles have to wait during 

the red interval and the corresponding delay observed is high. In Figure 3-3(b), with an offset 

of 20 seconds, we can see that the truncation is around the middle of the platoon which is 

dense and therefore corresponds to a high value of yellow flow. However, the delay is now 

reduced since fewer vehicles are required to wait at the intersection. Figure 3-3(c) and (d) 

demonstrate the same mechanism. Reviewing all intersections, we observe that delays are 

usually minimal when only the very last part of the platoon is truncated and the corresponding 

yellow arrival is also relatively low. 

Matters start to complicate when both directions are included in the analysis of an intersection. 

Figure 3-4 displays diagrams for three intersections. In each diagram the optimal offset used in 

the field is marked with a vertical gray band. Figure 3-4(a) shows what happens when the 

offset is included from the current value of 5 seconds to 10 seconds. It is clearly observed that 
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the delay and yellow arrival on link 201 remain about the same, while on the opposing link 

203 both delay and yellow arrival are reduced. Further shifting the offsets to 15 seconds 

continues to reduce the yellow arrival on link 203, while increases the delay on link 201. Thus 

the benefits of changing offset may need to be evaluated by applying weights on delay and 

yellow arrival and an optimization mechanism that locates the optimal offset for an 

intersection could be established. Figure 3-4(b) and (c) demonstrate different patterns due to 

the residual queues in node 3 and a different pattern of side street platoons on node 4, but the 

same optimization concept still applies. 

 

 
Figure 3-4 Delay and Yellow Arrival Flow Diagrams for all Links 

The main insight obtained from this analysis is t hat t here are situations when shifting t he 

offsets can reduce yellow arrival with little change in intersection delay. Furthermore, we have 

established a framework for optimizing an isolated intersection with respect to delay and 

yellow arrival. 
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4.2.2 The Optimization Model 

Utilizing the insights from the previous section, a simple optimization algorithm is developed. 

The algorithm generates diagrams similar to the ones used in the previous section, but instead 

of calculating delay and yellow arrival for the link, it calculates delay and yellow arrival for 

the whole route. Thus it is possible to find the offset for an intersection that optimizes the 

whole route. The algorithm is iterative and it finds the optimal offset for the first intersection 

while keeping all other offsets constant, and then performs the same at all other intersections 

iteratively. 

 

This simple algorithm has several drawbacks which and often results in finding a local 

minimum rather than a global optimum. The setbacks are primarily a result of sensitivity to 

the starting point of the algorithm and to the order of nodes to be optimized. To reduce the 

sensitivity, following an exhaustive analysis of possible outcomes, the algorithm shown in 

Figure 3-5 is proposed. 
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Figure 3-5 Algorithm for Proactive Signal Timing Optimization 

The algorithm requires as an input a TRANSYT-7F model of several adjacent intersections. 

Sub-process 1 (shown in Figure 3-5) determines the initial values of the offsets for the process. 

The initial values found to produce the best results are the optimal offsets calculated using 

TRANSYT-7F that minimizes intersection delay, thus Sub-process 1 performs a standard 

TRANSYT-7F offset optimization. The second sub-process determines the sequence in which 

the nodes will be optimized. The sequence is decided based on descending weighted value of 

delay and yellow arrival. This sub-process ensures that the critical nodes will be optimized 

first. Next, the algorithm goes into a loop of optimizing each node with respect to the corridor, 

while keeping all other nodes constant. Sub-processes 3 and 4 perform the simple optimization 

process described earlier in this section with an additional constraint on the maximum increase 

in corridor delay. The new optimal offset for each node is used for the consecutive 
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optimization of the next node. The process is terminated when the improvement rate is lower 

than a predetermined threshold. 

 

4.3 A Case Study 

The five intersection corridor described previously is initially used to evaluate the 

performance of the proposed algorithm. The result shows that yellow arrival in the section 

decreased by 37.5%, delay increased by 1.8%, and the total cost (which is a weighted sum of 

yellow arrival and delay) for this section decreased by 21%. 

 

To further validate the optimization model, we also evaluated its performance on an extended 

section along the same corridor that includes 10 intersections from Jordan to Curtner. The 

result for this extended corridor shows a 17.9% decrease in yellow arrival, a 1.2% increase in 

delay, and a 7.9% decrease in total cost. Figure 3-6(a) shows the outcome produced by the 

algorithm for the five intersection case and Figure 3-6(b) for the 10 intersection case. 

 

 
Figure 3-6 Performance of Optimization Algorithm 
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5 CONCLUSIONS AND NEXT STEPS 

 

Under this project, a signal-cycle-based data analysis was performed to study the contribution 

factors of red-light -running occurrences. This analysis used second-by-second signal phasing 

and timing data together with loop data. It identifies the yellow arrival flow, i.e., number of 

vehicles arrived at intersection during the yellow phase, as the most significant factor on RLR 

occurrences. The importance of this finding is that the yellow arrival is a controllable 

parameter of traffic operation and therefore it can be used as a safety measure in the design of 

signal timing. Inspired by this finding the research team has proposed a proactive signal 

timing optimization concept. The preliminary study demonstrated the potential of this timing 

optimization concept in significant reducing RLR occurrences without compromising 

intersection efficiency. 

 

As a continuation of this project (TO5210), the research team is performing more detailed 

study, under Task Order 6210. The objectives are 

• Further looking into the concept of proactive signal timing optimization, to validate 

the effective via microscopic and macroscopic simulation, and to develop a user-

friendly software tool for traffic engineers. 

 

• Investigate on-line countermeasures that aim at avoiding crashes caused by RLR. 
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