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Potential for Safety Improvement

The abundance of data in today’s world generates opportunities for deeper compre-
hension of the various parameters affecting crash frequency. This study incorpo-
rates data from many different sources (summary statistics are provided in Table
1) including geocoded police-reported crash data, curbside infrastructure data and
socio-demographic data for the city of San Francisco, CA. To handle over-dispersion,

Another metric considered for prioritization is the potential for safety improvement
(PSI), defined as excess expected average crash frequency with EB adjustment:

PSIyp; = Exp(Ailni) — i 5)

Based on all the three likelihood-based model selection criteria, we con-
clude that the third model best explains the segment-level crashes among
the NB model specifications. Once the final NB model was identified,
two-component FMNB and GFMNB models were estimated using the same
variables as in the NB model.

Indicatively, the coeflicients for the class membership model for GFMNB
component 2 which are estimated using a binary logit model are presented,
as well as the posterior probabilities of component 2 for both FMNB (left)
and GFMNB (right) for the segments in scope.
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follows a Poisson distribution with the mean A;,and, A; follows the Gamma distribution
with shape parameter ¢ and scale parameter, u;/¢:
ni|A; ~ Poisson(4;) and A; ~ ' (&, i/ ) (1)

The summary statistics of component characteristics for the FMNB and
GFMNB models are provided below:
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Discussion and Future Research

o0 (¢ + n;) o \( w \" Two different functions for the derivation of the priors are implemented in the context Variables FMNB GFMNB
plm) = / Pl ) f(Ai)dA; = I’ ( ( ) ) of this research. One for constant component weights without a class membershi — “omp. . Tomp. 2 | Tomp. [ Tomp. 2
0 )T (i +1)\p+ i) \d+ p & p Total collisions (mean) 0.3 0.7 0.2 0.6

Herein, T'() is the Gamma function and f(»;) is the marginal probability of observing model (FMNB),i.e., 7z = m; and one for a finite mixture model with a class Total collisions (variance) 0.6 1.8 0.6 1.4 * The differences observed in the component-specific models illustrate the
n; crashes. Given a vector of explanatory variables, X;, the mean, E(n;) for a given membership model estimated using multinomial logit models (GFMNB). % freeways 1.3% 1.2% 0.7% 0.2% possibility that finite-mixture models may capture different safety regimes

segment, i, can be expressed as: o major streets 8.3 13.4% 1 12.8% which can collectively explain the overall crash data.
Enp(ni) =i = exp(BXi) (3) MethOdOlOgy ZZ fjg:ln iiztztreets ;461:;2772 éi:gzz 513(1):22772 23:2;72 * The use of random parameter models and spatial correlation structures will

To correct for regression-to-the-mean, an Empirical Bayes (EB) adjustmentis applied, Peak hour bicycle volumes 1673 2468 65.5 340 3 be explored in future research.
combining a si.te’s historica.l c.rash data with the expected number of crashes estimated Three nested NB models where tested on three model selection criteria (Log- Presence of bus line 33.0% 40.0% 13.0% 61.0% « Future studies must also consider more detailed safety assessments of
based on the site characteristics: | 5 Likelihood (LL), Akaike Information Criterion (AIC) and Bayesian Information Yo one-way 16.3% 22.0% L7 2331 curbside infrastructure such as temporary pick-up/drop-off loading zones,
Eng(di|n;) = ( 'L_t ¢) n; + ( — ¢) U;. 4) Criterion (BIC)). The first model considered only segment-level variables, while ii%;cggn()mean) 4;(1)?1 Sgg'; ;6132'8 52;;'3 no-parking zones to assure causality in the variables considered.

o g the Sec‘?nd .incorporated adjoining int?rseCtion inform_aﬁon' The third NB model % of zero vehicle households 27.2% 33.9% 20.8% 39.0% * Definitive assessment of the impact of TNC pick-ups/drop-offs on safety
alternative incorporated TAZ-level variables on TNC pick-ups/drop-otts and demo- Mean segment length 92.5 118.9 2.7 83.5 will require more detailed data collection efforts and collaboration from

graphic information.

TNC companies to account for the temporal variation in TNC activity.



