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Introduction

The abundance of data in today’s world generates opportunities for deeper compre-
hension of the various parameters affecting crash frequency. This study incorpo-
rates data from many different sources (summary statistics are provided in Table
1) including geocoded police-reported crash data, curbside infrastructure data and
socio-demographic data for the city of San Francisco, CA. To handle over-dispersion,
negative binomial (NB)modelswere developed, and to capture additional unobserved
heterogeneity, two-component finite mixture NB models were formulated, one with
fixed priors (FMNB) and another with varying priors (GFMNB).

Table 1: Summary statistics of variables considered

Variable Min q1 x̃ x̄ q3 Max
No. of collisions (2013-2017) 0.00 0.00 0.00 0.42 0.00 17.00
Length 0.17 57.20 86.02 99.57 134.93 1242.03
AADT 0.00 240.60 1592.56 4433.23 5465.72 62287.93
Peak hour bicycle volumes 0.00 3.82 27.04 189.02 129.51 7392.41
Median presence (0/1) 0.00 0.00 0.00 0.10 0.00 1.00
No. of lanes 0.00 2.00 2.00 2.20 2.00 6.00
On-street parking spaces 0.00 0.00 0.00 3.09 0.00 110.00
Fraction of local streets 0.00 0.00 1.00 0.71 1.00 1.00
Presence of bus lines 0.00 0.00 0.00 0.35 1.00 1.00
Ave. daily TNC activity 3.68 5.51 6.07 6.03 6.59 7.79
Percentage of zero-vehicle
households

0.00 0.12 0.23 0.29 0.41 0.98

Negative Binomial Model

Given the non-negative integer nature of crashes, negative binomial (NB) models are
extensively used for crash frequency modeling. The negative binomial regression
arises from a two-stage model for the distribution of number of crashes, ni, which
follows a Poisson distributionwith themean λi,and,λi follows theGamma distribution
with shape parameter φ and scale parameter, µi/φ:

ni |λi ∼ Poisson (λi) and λi ∼ Γ (φ, µi/φ) (1)
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Herein, Γ() is the Gamma function and f (ni) is the marginal probability of observing
ni crashes. Given a vector of explanatory variables, Xi, the mean, E(ni) for a given
segment, i, can be expressed as:

ENB(ni) =µi = exp(βXi) (3)
To correct for regression-to-the-mean, anEmpiricalBayes (EB) adjustment is applied,
combining a site’s historical crash data with the expected number of crashes estimated
based on the site characteristics:
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Potential for Safety Improvement

Another metric considered for prioritization is the potential for safety improvement
(PSI), defined as excess expected average crash frequency with EB adjustment:

PSINB,i = ENB(λi |ni) − µi (5)

Generalized Finite Mixture NB Model

A finite mixture negative binomial model utilizes a finite number (K) of unobserved
categories/latent classes to capture the unobserved heterogeneity in crash data. The
crash count at a location, ni, follows the Poisson distribution with the mean crash
rate λi, and λi in turn follows a K-component finite mixture of gamma distribution:

ni |λi ∼ Poisson(λi) and p(λi) =

K∑
k=1

πik pk(λik), (6)

where, πik = πk(γ, zi) is the prior probability of component k, with
∑K

k=1 πik =

1 with πik > 0,∀k.
Themarginal distribution of ni follows amixture ofNBdistributionswith probability
density function and mean defined as follows:
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E(ni |Xi,ΘΘΘ) =

K∑
k=1

πikµik (8)

The prior probability is modeled using multinomial/binary logit framework using
explanatory variables z and coefficients γ. ΘΘΘ =

{
(β1, ..., βK), (φ1, ..., φK), γ

}
is the

vector of all parameters. The posterior probability of an observation, i belong to
component, k is given by:

wik = πik pk(ni)/p(ni), (9)
where, pk(ni) represents marginal probability of observing ni crashes conditional on
the observation belonging to component k.
The EB estimate for the GFMNB model is given by:
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Two different functions for the derivation of the priors are implemented in the context
of this research. One for constant component weights without a class membership
model (FMNB),i.e., πik = πk and one for a finite mixture model with a class
membership model estimated using multinomial logit models (GFMNB).

Methodology

Three nested NB models where tested on three model selection criteria (Log-
Likelihood (LL), Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC)). The first model considered only segment-level variables, while
the second incorporated adjoining intersection information. The third NB model
alternative incorporated TAZ-level variables on TNC pick-ups/drop-offs and demo-
graphic information.

Results

Based on all the three likelihood-based model selection criteria, we con-
clude that the third model best explains the segment-level crashes among
the NB model specifications. Once the final NB model was identified,
two-component FMNB and GFMNB models were estimated using the same
variables as in the NB model.

The summary statistics of component characteristics for the FMNB and
GFMNB models are provided below:

Results

Indicatively, the coefficients for the class membership model for GFMNB
component 2 which are estimated using a binary logit model are presented,
as well as the posterior probabilities of component 2 for both FMNB (left)
and GFMNB (right) for the segments in scope.

The figure below, evaluates the correlation between models. The EB es-
timates (left) show high degree of correlation, implying that the different
models may produce high overlaps when prioritizing sites for investigation.
In comparison, the PSI estimates (right) demonstrate much lower correla-
tions, especially between GFMNB and other models.

Discussion and Future Research

• The differences observed in the component-specific models illustrate the
possibility that finite-mixture models may capture different safety regimes
which can collectively explain the overall crash data.

• The use of random parameter models and spatial correlation structures will
be explored in future research.

• Future studies must also consider more detailed safety assessments of
curbside infrastructure such as temporary pick-up/drop-off loading zones,
no-parking zones to assure causality in the variables considered.

• Definitive assessment of the impact of TNC pick-ups/drop-offs on safety
will require more detailed data collection efforts and collaboration from
TNC companies to account for the temporal variation in TNC activity.


