
CSCRS Road Safety Fellowship Report:
A Human-Machine Collaborative Acceleration Controller
Attained from Pixel Learning and Evolution Strategies

Fangyu Wu1Alexandre M. Bayen2

Abstract— Autonomous driving has been a major area
of research in transportation since the mid-1980s. A cen-
tral motivation of this new paradigm is that it promises
greater safety and efficiency compared to human drivers.
However, despite recent remarkable progresses, current
autonomous driving systems still require improvements.
Inspired by the success of autopilot systems in flight
control, we propose to approach the problem from the
perspective of vehicle control augmentation. Specifically,
we adapt a state-of-the-art reinforcement learning (RL)
algorithm called Evolution Strategies (ES) to train an
auxiliary acceleration controller on a pixelated local
observation space. By augmenting the actions of a human
driver modeled by the Intelligent Driver Model (IDM), we
show that the RL controller is able to help humans drive
more efficiently than they would without augmentation
by more than 50%. This preliminary study suggests that
this type of hybrid approach may be used to develop
user-specific adaptive driving controllers and provably
safe autonomous vehicles. For reproducibility, the source
code of this project is released at https://github.com/
flow-project/flow.

I. Introduction

With the recent rapid development of au-
tonomous vehicles, there has been a wave of tech-
nological innovations in the automobile industry,
such as Google’s Waymo, Tesla’s Autopilot, and
General Motor’s Super Cruise. While these com-
panies aim to develop driving systems that could
ultimately replace human drivers, recent news on
fatal traffic accidents involving those experimental
automated vehicles suggest that progress remains
to be made in automation [1].
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The social implications of full vehicle automa-
tion are also concerning. One of the fundamental
assumptions of the current traffic rules is that a
vehicle must be operated with complete human
supervision. Hence, certification of autonomous
vehicles will certainly involve a long and challeng-
ing legal process.

Motivated by the technological and societal
challenges mentioned above, we draw inspirations
from the aviation industry. Aircraft autopilot sys-
tems are among the safest methods of transporta-
tion. However, their high performance and robust-
ness were not built overnight. Instead, they initially
started as assisted pilot systems and were only
slowly upgraded over time. Introduction of new
features was incremental and always tested. Such
a conservative development path ensures a safe
and steady transition from early manual control
systems to modern autonomous control systems.

Inspired by the success of flight autopilot sys-
tems, we propose to adopt a framework called
augmented driving to facilitate the transition from
human-operated driving to fully autonomous driv-
ing. Augmented driving is a vehicle control system
that enhances the performance of the existing driv-
ing control system, such as a human driver or an
adaptive cruise controller.

In the short term, by combining the strength
of the host and the assistant, one of the goals
of automation is to develop a vehicle controller
safer and more efficient than if used in isolation.
In the long term, such a framework provides a
tangible path for technological development and
social changes. With it, automotive companies
would be able to focus on realistic incremental im-
provements. Over time, as the assistant is steadily
incrementally improved, the host will delegate
more and more tasks to the assistant. Eventually, as
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the auxiliary controller becomes powerful enough,
it will effectively take over the role of the host.
Since augmented driving systems will not be able
to replace humans in the transition phase, society
has a chance to adjust its legal structures to this
technological shift.

In this article, we formally define the problem of
driving augmentation and propose a solution based
on a state-of-the-art evolutionary RL algorithm
named ES [2]. The key contributions of this article
are as follows:

• We develop an end-to-end learning algorithm
that can train a vehicle acceleration controller
with only pixel inputs and system-evaluated
rewards.

• We demonstrate that the image-based assistive
acceleration controller improves the baseline
human driving model IDM by over 50%.

• We suggest that in the long run augmented
driving can be a viable strategy to design
adaptive and safe driving controllers.

The remainder of this article is organized as
follows. We begin with a brief overview of the
literature in Section II. In Section III, we formulate
the problem in mathematical terms. Section IV
proposes a solution based on a state-of-the-art RL
algorithm, called ES, coupled with a car following
model, named IDM. The numerical experiments
are demonstrated in Section V and discussed in
Section VI. Finally, we conclude our study in
Section VII.

II. Background
Automated vehicle control has been an impor-

tant research area in robotics and control. Over
the past ten years, there has been remarkable
technological progress in this field, like the early
success of Team Stanley in the DARPA Grand
Challenge [3], the release of Autopilot assisted
driving system by Tesla [4], and the release of the
autonomous taxi program by Waymo [5].

Among the technologies that enable the high-
performance autonomous vehicles, RL has been
significant. By imitating the behaviors of human
drivers, researchers from NVIDIA show that a neu-
ral network can learn to drive in simple scenarios
directly from camera pixels [6], [7]. With more
advanced RL algorithms such as asynchronous

actor critic [8], deep Q-learning [9], and evolution
strategies [2], one may be able to train a functional
driving controller with higher sample efficiency
and lower generalization errors than the plain im-
itation learning approach.

Among the existing RL-based autonomous driv-
ing methods, a common theme is to train a vehicle
to obey the traffic rules [7] and to arrive at desti-
nation as fast as possible [10]. While these goals
are essential for a vehicle to be able to operate
in the real world, they do not answer the other
half of the promises of vehicle automation, i.e.,
using autonomous vehicles to reduce road fatality
and to improve transportation efficiency. To see
this, one may find that under this fundamental
objective, an autonomous driving controller may
learn to drive selfishly, e.g., frequent passing and
aggressive tailgating. Although behaving as such
might let the vehicle arrive the destination faster,
it will put public safety at risk and impact other
drivers’ travel time. Therefore, to reduce accidents
and increase throughput, one needs to look beyond
the paradigm of learning to drive and learning to
drive fast.

A next-level question to ask is how to train
autonomous vehicles to drive in a mixed-autonomy
traffic with the goal of maximizing navigation
safety and road throughput. To this end, recent
field experiments have demonstrated that it is pos-
sible to use a small percentage of autonomous
vehicles to improve overall traffic flow. In one
of the experiments, the researchers show that a
manually designed proportional integral saturation
controller can significantly improve the overall
traffic flow on a single-lane circular track with only
one autonomous vehicle [11].

Recently, numerical studies have shown that
model-free RL can achieve the same level of per-
formance as the hand-tuned controller [12], [13],
[14], [15] in and beyond the original setup of [11],
i.e., the idealistic traffic on a single-lane circular
track. Using the state-of-the-art RL algorithms,
it is demonstrated that model-free RL is capable
of finding interesting driving strategies in more
complex traffic networks, including intersections,
merge points, and roundabouts.

One of the characteristics of the work in [12],
[13] is that it assumes perfect information about
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the system in terms of vehicle speeds, spacings,
and positions during the test time. However, in real
world applications, this data is not easy to acquire
and measurements are often noisy when driving in
high speed or in dense urban areas.

In addition to complications arising from imper-
fect information, feature engineering becomes dif-
ficult in complex urban settings, where the topol-
ogy of the road network becomes complicated and
the state of the drivers becomes high-dimensional.
For example, it is challenging to define the notion
of leaders and followers in multi-lane traffic: A
taxi driver who is looking for customers may not
necessarily follow the front vehicles; A careful
truck driver who is about to change lane may pay
more attention to the vehicles in the target lanes
than the vehicle behind.

To address the issues of measurement difficulties
and feature engineering, a natural solution is to
work directly with raw sensor inputs. For many
autonomous driving systems, such inputs take the
form of N-dimensional images centered at the
vehicle’s current position. Such representation is
convenient since it directly captures everything
within the system without explicit state estimation
and feature engineering.

Given the inputs as images, a good choice for
the RL algorithm is the ES method. Image-based
end-to-end RL has been proven a viable strategy
since the success of deep Q-learning [16]. Later
work by [2] has shown that the ES method has
comparable performance to deep Q-learning but is
more convenient for parallel computing on clusters.
Given the availability of a massive cloud comput-
ing infrastructure, we hence choose ES as our RL
algorithm.

Motivated by the discussion above, we choose
to study the performance of augmented driving
controllers in the image-based state space using an
end-to-end learning process based on ES method.
We formally formulate the problem in the follow-
ing section.

III. Problem Formulation

As commonly adopted in RL, we define the
problem as a discrete-time partially observed
Markov decision process (POMDP). By definition,
a POMDP consists of state space S, action space

A, observation space O, transition probability
T, emission probability E, and reward r . In our
specific problem, the POMDP {S,A,O,T,E,r, ρ0}
takes the following form.
• S ∈ Rh×w×c×t is the state space with height h,

width w, channel c, and memory t. As we are
using a grayscale image, c = 1. The memory t =
50 since memory buffer is set to be the past 5
seconds at a temporal resolution of 0.1 second.

• A : O → R is the action space, corresponding
to the correction to vehicle’s baseline longitudi-
nal acceleration. Hence, the resulting combined
longitudinal acceleration a is a linear combi-
nation of the baseline acceleration a0 and the
RL correction term a+ weighted by a controller
parameter α

a = (1−α)a0+αa+,

where α is the augmentation coefficient where
α ∈ [0,1]; a0 and a+ are bounded control inputs
between -5 m/s2 and 3 m/s2.

• O : S → Rh′×w′×c′×t ′ is the observation space
with height h′, width w′, channel c′, and memory
t′. Specifically, we choose h′ = 100, w′ = 100 ,
c′ = 1 and t′ = 5. See Figure 1 for an example
about the geometric relation between observation
space O and state space S. Note that on the right,
the images are rendered at two pixels per meter
and the radius of the observation space is set to
25 meters. As shown in Figure 2, the observation
space stores the temporal information from the
past five-second at a temporal resolution of one
second.

• T : S×A×S→ [0,1] is the transition probabil-
ity that maps a state-action pair to the next state.
Here POMDP assumes that the next state is only
dependent on the current state and action.

• E :S×O→ [0,1] is the emission probability that
maps the state to the observation.

• r : S × A → R is the reward function. The
specific form of reward function is problem-
dependent, but it should capture the two fun-
damental aspects of driving, i.e., safety and
efficiency. For this study, we choose

r =
1

vmax

(
βvavg −(1− β)vstd

)
,
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with

vavg =
1
N

N∑
i=1

vi, and vstd =

√√√√ N∑
i=1

(
vi −

1
N

N∑
i=1

vi

)2

,

where vavg is the average velocity, vstd is the
velocity standard deviation, vi is the current
velocity of the ith vehicle, N is the total number
of vehicles in the POMDP, and vmax is the
maximum allowable velocity, which is set to
30 m/s2, and β is an user-defined weighting
parameter which in this article is set to be 0.8.
For training efficiency, vi is obtained directly
from the simulator, rather than estimated from
the images. Note that we use vavg to measure
the system throughput and vstd to approximate
the risks of collisions [17].

• Finally, ρ0 : S → [0,1] is the initial state distri-
bution.
In RL, our goal is to find a series of actions

that maximizes the total reward. We formalize this
notion of reward maximization below.

Denote p(st+1 |st,at) as the transition probability
from the state-action pair (st,at) to the next state
st+1. Let the τ be the trajectory of the system
from the time t to event horizon T , that is, τ =
(st,at, st+1,at+1, . . .,aT−1, sT ). Note that event hori-
zon T is defined to be from the initial time to the
time when the POMDP terminates. In our problem,
we set T = 1500 s.

The objective of the problem is then to find a
function π∗(at |ot) : O →A, also known as policy,
such that the expected future reward is maximized,

argmax
at,···aT

Eτ

T∑
i=t

ri . (1)

The function π∗ that produces the solution to
Equation (1) is defined as the optimal policy.

If we can represent π∗ with some θ-parametrized
function approximator π̂θ , then solving Equa-
tion (1) is equivalent to solving the following
optimization problem:

argmax
θ

Eτ

T∑
i=t

ri . (2)

With problem formally stated in Equation (2), we
propose our solution in Section IV.

Fig. 1: Comparison between global state space and
local observation space. Note that the state space
and observation space only contains raw pixels.

(t - 4) s
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Fig. 2: Pixelated local observation space with a
five-second memory. Note that the memory buffer
increments at 1 s while the simulation steps at 0.1
s.

IV. Proposed Solution
We apply the ES method to solve the problem

defined in Section III. To achieve this, we need a
data collection procedure and an implementation
of the ES method. We delineate the technical
details of the two processes as follows.

A. Data collection
We demonstrate that our method can learn an

effective traffic controller with pure simulated data.
To this end, we select the open-sourced traffic
simulation software Simulation of Urban Mobility
(SUMO) [18] and its corresponding RL library
Flow [12].

To approximate human driver’s behaviors, we
choose the well-known human-driving model IDM
[19] as defined below:

d2x
dt2 = a

(
1−

(
vα

v0

)δ
−

(
s∗(v,∆v)

s

)2
)
,
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with s∗(v,∆v) = s0 + vT + v∆v

2
√

ab
, where v0 is the

desired velocity, s0 is the minimum desired spac-
ing, T is the minimum desired headway, a is the
maximum vehicle acceleration, b is the decelera-
tion coefficient, δ is the exponent coefficient. In
this study, we choose to use the default IDM
parameters in [20]: v0 = 30 m/s, s0 = 2 m, T = 1 s,
a = 1 m/s2, b = 1.5 m/s2, and δ = 4.

Note that the use of IDM as the human-driving
model is not a necessity. In fact, one can pick
any other human-driving model, or even use an
actual human driver. The procedure of training
a controller will stay the same. In our case, we
simply opt for IDM, as it is one of the most
acknowledged models in the community.

Since both SUMO and Flow do not support real-
time image-based state information query, we have
developed a rendering plugin in Flow based on
a python graphics library called Pyglet [21]. It is
capable of rendering any SUMO traffic scene at
approximately 15 frames per second on a modern
computer. With it, one can train a functional RL
controller with ES in a 16-CPU machine in less
than 4 hours. To facilitate future research, the
source code of this plugin is released at https:
//github.com/flow-project/flow.

B. Algorithm implementation
For the RL algorithm, we use an off-the-shelf

implementation of ES from a python RL library
called RLlib [22]. The library is designed for ac-
celerated RL training through distributing the com-
putations across multiple CPUs. In this study, all
the numerical experiments are parallelized on a 16-
CPU AWS EC2 instance of type c4.4xlarge. The
source code of the implementation is hosted on
https://github.com/flow-project/flow and the EC2
AMI hash is ami-04b53bf506e95394f.

For hyperparameter settings, we decide the
optimal parameters through a parameter sweep.
Through grid searching in the parameter space, we
find the most effective ES hyperparameters are as
follows:

• Evaluation probability: 0.05
• Noise standard deviation: 0.01
• Step size: 0.01
• Iterations per trial: 50
• Number of trials: 3

The training is repeated for three times with dif-
ferent random seeds. The resulting trained model
is selected to be the one with the highest rewards
among the three trials.

Lastly, we use a neural network as the un-
derlying parameterized model. As for the neural
network architecture design, we use a two-layer
convolutional neural network followed by a two-
layer multilayer perceptron. The details of the
architectural design of the neural network are il-
lustrated in Figure 3.

V. Numerical Experiments

We choose to investigate the effectiveness of
augmented driving in two sets of numerical exper-
iments. The first set of experiments is conducted
on a circular track inspired by the work in [23], as
shown in Figure 4a. The second experiment set is
set to be a cyclical cross following the design in the
work of [12], as illutrated in Figure 4b. The cir-
cular track approximates the single-lane highway
driving scenario, while the cyclical intersection
resembles an one-way intersection in a dense urban
setting. Despite its abstraction from real-world
traffic scenarios, these two environments provide a
controlled environment to study the feasibility of
pixel-based driving augmentation. For brevity, in
the following paragraphs, we denote the circular
track as Circle, and the cyclical intersection as
Cross.

To test the effectiveness of the driving augmen-
tation, for each environment, we train a RL agent
for various augmentation coefficient α ranging
from 10% to 100% in increments of 10%. The
training processes for the 10 agents on Circle
are illustrated in Figure 5a, while the training
processes for the 10 agents on Cross are shown
in Figure 5c. As indicated in the color bars, the
darker greens represent higher rewards, while the
lighter greens represent the lower rewards. Note
that pure white color on the left edges of the plots
indicate NaN (not a number), which is caused by
collisions during early stage of policy exploration.
The figures indicate that high rewards are attained
with a augmentation factor coefficient between
40% to 70%.

As implied by the experiments, RL augmenta-
tion can improve driving efficiency of the baseline
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Fig. 3: Neural network model architecture. The network takes a five-channel image as input and produce
a single number as output which corresponds to the correction to human driver’s default acceleration.

(a) Circle environment. (b) Cross environment.

Fig. 4: Experiment environments. Circle environment represents a single-lane circular track. Cross
environment represents a self-connected single-lane intersection.
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(a) Circle learning heatmap.
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(b) Circle learning curves.
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(c) Cross learning heatmap.
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(d) Cross learning curves.

Fig. 5: Training learning heatmaps and learning curves. Both environments achieve better performance
at an augmentation coefficient between 40% and 70%.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Circle 210 210 324 336 334 340 342 343 340 336 342
Cross 348 336 353 350 510 548 545 562 420 447 436

TABLE I: Training results of ES on Circle and Cross. The best performance is attained at 70% as
shown in bold.
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IDM driver by more than 50% as shown in Fig-
ure 5b and Figure 5d. The baseline controllers are
marked with black dash lines while the augmented
controllers are displayed in solid colored curved.
To be precise, the best performance of each exper-
iment is tabulated in Table I.

Furthermore, note that in the Cross environ-
ment pure RL agent is outperformed by a few
human-machine-collaborated systems. We hypoth-
esize that such improvement may be diminished if
we train the agents with more iterations.

In addition, the results indicate that the training
is robust to the choice of the augmentation coef-
ficient. For Circle environment, any augmentation
above 20% can approximately achieve the same
level of performance. For Cross environment, any
augmentation between 40% to 70% can attain the
optimal value.

VI. Discussion

The numerical results presented above have
practical implications on the development of ve-
hicle automation.
• First and foremost, the results indicate that driv-

ing automation is a viable path to a more effec-
tive transportation. As shown in the numerical
experiments, the addition of a RL augmentation
controller improves the system performance by a
large margin. The fact that the optimal augmen-
tation is attained at 70% in Cross also indicates
that there exists a set of constrained problems
where human-machine collaboration is no worse
than full machine control.

• Furthermore, we argue that such augmentation
system is also cognitively safe. Because the
augmentation term requires active participation
of the human driver throughout the course of
the driving, the human driver will always stay
engaged in the control process. Should an emer-
gence happens on the road that requires human
control, the driver will be ready to react. Such
human-in-the-loop control should demonstrate a
shorter reaction time compared to a human-out-
of-the-loop control system and thus will be more
likely to avoid potential dangers.

• Moreover, augmented driving controller may
also be modified to account for the differences
of every individual driver. Because many RL

algorithms, such as ES, actor-critic method, and
policy gradient method, are capable of learning
in online setting, we can continue improving
the performance of the RL controllers after the
deployment. Through interacting with the human
driver in real-time, it may further be adapted
to the characteristics of that human driver. For
example, the controller may learn to provide
more guidance to a risky driver but only exert
minimum intervention to a skilled driver. The
additional level of adaptation may allow for a
new level of driving safety and efficiency.

• Lastly, the results also indicate a new direc-
tion in vehicle controller design. In this article,
we augment a human driver with a RL agent.
However, one can augment any controller with
a RL controller. This sheds light on a new
type of driving control, a system consisting of
a model-driven baseline controller with a data-
driven RL controller. In the hybrid system, the
baseline controller should demonstrate provably
safe behaviors given any perturbation up to
the magnitude of the RL controller output; the
RL agent will be trained through driving data
and microscopic simulations to attain statistically
significant improvement in efficiency. As the
result, the combined system will be both fail-
safe as guaranteed by the hand-designed baseline
controller and highly efficient as enabled by the
RL controller.

VII. Conclusions

In this study, we show that the state-of-the-art
RL algorithm ES can be applied to augment human
in the control of vehicle acceleration by taking
directly the raw pixel inputs without any state
estimation during the test time. In an end-to-end
fashion, we train a convolutional neural network
to improve a human driver’s acceleration control.
The results indicate that the augmented driver
can operate 50% more effectively than without
augmentation. Moreover, we find that the system
where human and machine collaborate outperforms
both purely human-operated and machine-operated
systems. Such controller design is also less likely
to induce cognitive inactivity, keeping the human
driver more alert during driving, and thus reduces
the likelihood of traffic accidents.
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The results suggests many promising directions
for future research. Researchers may investigate
how to adapt the RL controller to learn from a
specific human driver in an online settings. One
can also attempt to couple such RL agent with
a fail-safe manually designed controller such that
the combined system is both verifiably safe and
statistically high performant. To build from this
research, one can find the source code at https:
//github.com/flow-project/flow.

VIII. Future Work

This section includes the extension to the main
research topic presented above, where I delineate
my recent progress on (1) the development of end-
to-end pixel learning in a much more complex road
network called the University of Delaware Scaled
Smart City (UDSSC) and (2) my preliminary
theoretical work on statistical verification of RL
algorithms based on the principles of randomized
control trials (RCT).

A. UDSSC Environment
Towards the first goal, I am working on scaling

the proposed RL method from idealistic single-
agent traffic such as Circle and Cross to more
realistic multi-agent traffic. To this end, I am
adapting the UDSSC environment for multiagent
autonomous vehicle control.

The UDSSC environment is presented in Fig-
ure 6. The network, seen in Fig. 6, is a scaled
implementation of a physical robotic navigation
testbed at the University of Delaware. It consists
of distinct elements of actual road network design,
including: (1) roundabouts, (2) four-way intersec-
tions, (3) T-shaped intersections, (4) multilanes,
and (5) merges.

The goal of RL agent is to control and coordi-
nate a subset of vehicles in the traffic to increase
the average velocity of all road segments without
incurring traffic accident. In this environment, the
number of agents can be greater than one but
each one of them has the same observation space
and action space as the single agent in previous
study presented above. In Figure 6 we illustrate
a simulated traffic flow on the road network. The
objective of the RL algorithm is therefore to make
the traffic flow as fast and stable as possible.

Fig. 6: UDSSC environment. Traffic instabilities
such as queues and stop-and-go waves form pri-
marily near the intersections and roundabouts of
the network.

As a semi-realistic testbed for vechicle naviga-
tion and coordination in real traffic, this environ-
ment set possesses sufficient details for its trained
agent to be applied to real world, yet still maintains
computational tractability for it to be trained within
reasonable amount of time.

B. RL Algorithm Verification
In this section, I discuss the most commonly

used RL design verification method and propose
my changes to it to make it robust to confounding
factors. Specifically, this last section serves as a
response to a problem that I encountered during lit-
erature review as detailed in [24]. In that study, the
authors introduced two new algorithmic improve-
ments to A3C algorithm. The first addition is the
introduction of a goal-driven hierarchical structure
similar to that of [25]. The second addition is a
custom reward function. The authors were able to
achieve better performance after adding these two
features. Thus they (prematurely) concluded that
both features were meaningful augmentations to
the original A3C method [8]. Later they found out
that it was only the first feature, the custom reward
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function, that was helping the performance. Con-
sequently, their previous claim on the effectiveness
of the hierarchical structure was rendered invalid.

Indeed, formal causality tests should be required
in the proposal of new RL algorithms. In the
following paragraphs, I first formalize the verifica-
tion approach that was taken in [24], as it is also
quite commonly used in the research community.
Next, I show how one might avoid similar research
accidents, i.e., the problem of confounding factors,
through marginalization on potential confounders.

1) Popular Verification Procedure: I would like
to point out the importance of experiment design
in the establishment of causal relations. The au-
thors of a new algorithm always need to show
through experiments that their design results in
better performance than a RL algorithm without
such augmentations. However, between the current
practice in the RL research community and the
formal method of causal inference, I find there
is a significant gap. In current RL literature, a
new algorithm A′ is often proposed based on the
following verification procedure:

1) Test a sample of the most performant algo-
rithms {A1, A2, · · · , An} on certain benchmark
tasks {B1,B2, · · · ,Bm} to produce a baseline
score Ei, j[s(Ai,B j)].

2) Identify potential augmentations to an ex-
isting RL algorithm A0. Denote the set
of candidate algorithmic changes as C =
{c1,c2, · · · ,cl}. Denote the new RL algorithm
produced from A0 and a selection of candicate
changes C̃ as A0

⊕
C̃, where C̃ ⊆ C. Note we

usually do, but not necessarily require:

E j[s(A0,B j)] > Ei, j[s(Ai,B j)].

3) To verify the effectiveness of the algorith-
mic changes C̃, compute the expected per-
formance of A0

⊕
C̃ over {B1,B2, · · · ,Bm}. In

other words, compute:

E j[s(A0
⊕

C̃,B j)].

4) If the following condition holds:

EÑ, j[s(A0
⊕

C̃,B j)] > Ei, j[s(Ai,B j)|∀i, j],

then the algorithmic design C̃ is an valuable
addition to the original algorithm A0.

The above procedure essentially argues that ad-
dition of C̃ causes A0

⊕
C̃ to outperformance

the state of the art Ei, j[s(Ai,B j)] by showing that
addition of C̃ to A0 and the observed improvements
are correlated.

However, as we know, correlation does not
imply causation. Claiming causality based solely
on observational study will put the new discoveries
at the risk of fallacy. To avoid the trap, I propose
to adopt tools from causal inference.

2) Proposed Verification Procedure: Among
various techniques from the field causal inference,
I present a way to verify RL algorithmic designs
based on the principles of RCT. The proposed
method is delineated below.

1) Test a sample of the most performant algo-
rithms {A1, A2, · · · , An} on certain benchmark
tasks {B1,B2, · · · ,Bm} to produce a baseline
score Ei, j[s(Ai,B j)].

2) Identify potential changes pertained to the
augmentations of an existing RL algorithm
A0. Denote the set of candidate algorithmic
changes as C = {c1,c2, · · · ,cl}. Denote the
new RL algorithm produced from A0 and a
selection of candicate changes C̃ as A0

⊕
C̃,

where C̃ ⊆ C. Note we usually do, but not
necessarily require:

E j[s(A0,B j)] > Ei, j[s(Ai,B j)].
3) To verify the effectiveness of the algorith-

mic changes C̃, compute the expected perfor-
mance of A0

⊕
(C̃ ∪

Ñ) over {B1,B2, · · · ,Bm}
and Ñ ⊆ C \ C̃, where Ñ is a set containing
elements randomly selected from C \ C̃. In
other words, compute:

EÑ, j[s(A0
⊕

(C̃
∪

Ñ),B j)].
4) If the following condition holds:

EÑ, j[s(A0
⊕

(C̃
∪

Ñ),B j)] > Ei, j[s(Ai,B j)|∀i, j],

then the algorithmic design C̃ is an valuable
addition to the original algorithm A0.

Unlike the previously mentioned technique, this
approach carefully marginalizes out the effect of
potential confounding variables in Ñ such that the
demonstrated performance, if any, can be asserted,
with greater certainty, to be caused by the pro-
posed algorithmic design C̃.
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