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A simplified measure of streetscape 
enclosure for examining built 
environment influences on walking 
Abstract: Urban design is broadly recognized as an important influence on walking, but 
measuring design variables that impact walkers from a street-level perspective, and 
integrating these variables into travel analyses, remains a substantial challenge. Design is 
often characterized by measures of street network accessibility, which can be easily 
calculated from centerline datasets. These measures do not, however, account for more 
finely grained aspects of streetscape morphology that may influence walkers’ perceptions 
of safety, comfort, or interest. Urban design literature discusses numerous variables that 
may contribute to pedestrian-friendly places, but they are often difficult to define and 
inefficient to measure, posing challenges for incorporation into travel analyses. In order 
to facilitate more widespread investigation of streetscape-scale variables, I propose a 
simplified approach for measuring enclosure, a morphological property influenced by 
proximity to buildings, which is widely discussed by urban designers. This methods 
paper discusses the rationale for a simplified measure of enclosure, defines a measure of 
enclosure based on building distance, and reports on exploratory analyses that relates 
building distance to existing built environment measures and mode shares across 94 U.S. 
urban areas. Results suggest that building distance is moderately independent of common 
built environment variables, but relationships with walking mode share vary substantially 
between urban areas and have unexpected signs in some areas. This encourages further 
research investigating how enclosure influences walking in conjunction with other built 
environment variables, and how these patterns vary regionally or according to other 
patterns. 
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1 Introduction 
Walking as a mode of travel is widely understood to be influenced by built environment 
design. Transportation and land use researchers commonly use urban design variables 
such as intersection density, proportion of four-way intersections, and block length—the 
design component of Cervero & Kockelman’s (1997)’s D variables—as core inputs to 
walking and related travel analyses (Ewing & Cervero, 2010). Urban design literature, 
however, suggests that more finely grained variables related to streetscape morphology 
influence how pedestrians perceive safe, interesting, or otherwise satisfactory spaces 
(Ewing & Handy, 2009). Enclosure, the degree to which streetscapes are surrounded by 
vertical objects such as buildings—is widely discussed by urban designers as a key 
ingredient for pedestrian-oriented streetscapes (Ewing & Handy, 2009). Nonetheless, 
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enclosure and other streetscape-scale variables are not typically incorporated into travel 
analyses, likely owing to the difficulty of defining them precisely and measuring them 
efficiently. 
 
This methods paper examines the potential to operationalize streetscape enclosure 
through a simple measure; collect these measurements efficiently across large samples of 
streetscapes; and incorporate them into an analysis of walking behavior. In doing so, it 
lays the groundwork for more extensive investigations of how enclosure and other 
streetscape-scale variables affect walking and related modes such as transit, bicycling, 
and micromobility. My proposed enclosure measure leverages the substantial influence of 
building proximity on streetscape enclosure. Buildings with minimal setbacks and 
spacing between them contribute to greater enclosure, while larger setbacks, greater 
spacing, or fewer buildings contribute to less enclosure. By calculating the distance to the 
nearest building from regularly spaced points along street centerlines, and averaging 
these distances within areal units, it may be possible to approximate streetscape enclosure 
with widely available data, computational efficiency, and in terms that are 
straightforward to define and explain. Moreover, this measure is simultaneously sensitive 
to several morphological factors that impact enclosure—building size, quantity, spacing, 
setback distance, and orientation—reducing a multidimensional concept into a single 
ratio variable. While this measure is far too coarse for detailed analyses or planning, I 
hope that it may offer a foothold for streetscape-scale design to be incorporated into 
travel analyses alongside existing D variables, which similarly offer simplified 
characterizations of complex built environmental qualities 
 
In the remainder of this paper, I briefly review how enclosure is defined and 
operationalized in existing research, describe my simplified measurement approach, and 
conduct an exploratory analysis with a large sample of U.S. urban areas. Results show 
that enclosure is moderately independent of D variables and explains additional 
variability in walking commute mode share aggregated at the block group level, though 
these effects vary substantially between urban areas and are largely inconsistent with 
prevailing theory about the relationship between enclosure and walking. This suggests 
substantial opportunities for investigating these effects with more sophisticated analyses 
and differences in effects between urban areas. 

2 What is Enclosure? 
 
Many urban design theorists describe the importance of enclosed streetscapes for 
providing pedestrian-friendly urban environments (Alexander, Ishikawa, & Silverstein, 
1977; Arnold, 1993; Blumenfeld, 1971; Cullen, 1961; Jacobs, 1993; Lynch, 1981). A 
common approach to explaining enclosure is that it produces the sensation of an “outdoor 
room,” in which buildings or other large vertical objects, such as trees, may form walls, 
and the horizontal area of a street provides a floor. Ceiling height may be indicated by 
consistently aligned cornices, or more concretely, but overhanding awnings or tree 
branches. Cullen (1961) suggests that “enclosure, or the outdoor room, is, perhaps, the 
most powerful, the most obvious, of all the devices to install a sense of position, of 
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identity with the surroundings … it embodies the idea of hereness.” In part, this is 
because enclosure provides definition to outdoor spaces that make them legible as spatial 
entities: “I am outside IT, I am entering IT, am in the middle of IT” (p. 29). Enclosure 
provides the spatial foundation for referring to streets as coherent spaces. Jacobs (1993) 
also notes that pedestrians appear to be attracted to enclosure and the vertical edges that 
delineate it. This observation is consistent with by Appleton’s (1975) prospect-refuge 
theory, which suggests that some degree of enclosure is essential for providing a sense of 
protective cover. As Cullen dryly notes, “I am enclosed or I am exposed” (p. 29). 
 
Despite these powerful characterizations, enclosure remains imprecisely defined and 
there is no single, commonly agreed-upon measure. Some urban designers have offered 
quantified guidelines for the streetscape proportions and dimensions that may provide 
enclosure, the most popular of which may be the cross-sectional ratio of building height 
to cross-street width. Ratios ranging from 1:1 and 1:3 are offered as guidelines for 
pedestrian-friendly streetscapes, but there is little empirical evidence substantiating an 
optimum (Alexander, Ishikawa, & Silverstein, 1977; Jacobs, 1993). In earlier work, I 
developed a computational approach for measuring cross-sectional ratio, but it relied on 
detailed building height data and a complex appraoch for approximating cross-street 
width along streetscapes without consistent building frontages (Harvey, Aultman-Hall, 
Troy, & Hurley, 2016). Moreover, because streetscape width is defined a the distance 
between opposing façades, it has no clear definition in the common circumstance where 
there are no buildings along one side. 
 
A survey of urban design literature by Ewing and Handy (2009) identifies potential 
measures for enclosure based on the proportion of a block face with a façade along it, the 
proportion of visible sky, and the number of long sight lines. Purciel et al. (2009) 
operationalize some of these measures computationally, but they rely heavily on detailed 
datasets specific to their New York City study area. Similar to my earlier method 
described above (Harvey et al., 2016), they also confront challenges related to operational 
definitions of geometric entities and relations, such as whether a façade aligns with a 
block face, that would be fairly easy for a human analyst to gauge qualitatively, but 
present a substantial challenge for formal definition in a computational environment. 
These definitional challenges suggest that simplified measures that do not directly 
emulate qualitative measurements may be the most effective approach for measuring 
streetscapes computationally. 

3 Building Distance as a Simplified Measure of Enclosure 
 
To address the need for an enclosure measure that is easily explained, precisely defined, 
and efficiently computed from widely available datasets, I propose an approach based on 
the distance between sampling points along street centerlines and the nearest building. 
The approach relies on just two data inputs—street centerlines and building footprints—
that are increasingly ubiquitous. Operationalizing the method involves three steps: 
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1. Construct sampling points along street centerlines. For the exploratory 
analysis described in the next section, I spaced sampling points evenly at 10-
meter intervals. To increase analytical precision, they could be spaced more 
closely, or spaced farther apart to increase computational efficiency. Points might 
also be spaced randomly. Further research could investigate the sensitivity of 
results to different spacing. 

2. Measure the building distance between each sampling point and the closest 
point along a building footprint. For the exploratory analysis, I limited 
computational burden by limiting the search to buildings within 200 meters, an 
arbitrary value intended to reflect an extreme lack of enclosure. Sampling points 
with no building within 200 meters were assigned this maximum distance. 
Sampling points were also limited to finding closest buildings that did not require 
crossing a street centerline, preserving an assumption that a streetscape enclosure 
is only affected by buildings within blocks to either side. 

3. Aggregate building distances. In the exploratory analysis, I average building 
distances among all sampling points within U.S. Census block groups in order to 
coordinate with other built environment variables and travel statistics reported at 
that level. Future work might aggregate within block length street segments for 
more finely grained analysis of travel patterns, such as route choices. Examining 
sensitivity to different aggregation approaches and units is another potential area 
for future research. 

 
Figure 1 shows sampling points spaced at ten-meter intervals along street centerlines with 
lines drawn to the nearest building. The lengths of these lines represent the building 
distance measure. 
 

 
Figure	1.	Example	of	sampling	points	along	street	centerlines	with	lines	drawn	to	closest	building	footprints.	
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There is substantial potential to refine this measurement, including potential to 
discriminate between closest buildings along either side of a street in order to investigate 
how enclosure along only one side or both sides might influence user experience. The 
angles of lines connecting sampling points to closest buildings might be analyzed as a 
measure of façade continuity. If the line to the closest building is non-perpendicular to 
the centerline, it would indicate a façade gap. Sampling points might also be constructed 
in a way that distributes them more randomly, since street centerlines may not run 
precisely down the center of a street, and may, therefore, bias measurements to one side 
or the other. Such an approach might introduce substantial geoprocessing complexity, so 
I chose to assume that error in centerline position was randomly distributed across study 
areas such biases were random. 

4 Exploratory Analysis 
Data 
In order to demonstrate this method and explore its potential for explaining walking 
behavior alongside more conventional built environment variables, I calculated building 
distances across 941 U.S. Census urban areas that represented diverse sizes, geographies, 
and built environments. Sampling points were spaced at 10-meter intervals along every 
street centerline, excluding freeways and off-street trails, available from OpenStreetMap 
within each of these urban areas. OpenStreetMap data were accessed using OSMnx 
(Boeing, 2017). 
 
The U.S.-wide building footprint dataset now freely available from Microsoft (2019) 
allowed for consistent measurements of building distances across every urban area. The 
Microsoft footprints, derived from machine interpretation of areal imagery, are imprecise 
compared with building footprint datasets from many local agencies, but offer the benefit 
of consistent measurements across the diverse study areas. 
 
Building distances at individual sampling points were averaged across 2010 U.S. Census 
block groups. Block groups with less than 90% of their area within an urban area were 
excluded in order to minimize analysis of undeveloped areas at urban area edges. Block 
group-level data from the EPA Smart Location Database were joined to the building 
distance averages in order to compare them with more conventional built environment 
measures. Commute mode share statistics from the American Community Survey 2017 5-
year averages were also joined to the block group records, summarized as percent of 
commutes by walking and percent of commutes by walking & transit, based on the 
assumption that a large proportion of transit users walk to stations. All U.S. Census data 
were obtained from NHGIS (Manson, 2019). 
 

 
1 These 94 urban areas represent the largest 100 U.S. urban areas with the exception of Dallas—Forth 
Worth—Arlington, Houston, Miami, New York—Newark, Philadelphia, and Washington, D.C., which I 
was unable to process prior to the submission deadline due to a technical malfunction. I plan to update this 
manuscript to include these additional urban areas if I am invited to present or revise and resubmit. 
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Analysis Methods 
Within each urban area, Pearson correlations were calculated between building distance 
and a suit of likely correlates: walking and walking & transit mode share, and built 
environment variables representing each of the 5Ds that are more commonly associated 
with travel behavior: population density (density), land use entropy (diversity), 
intersection density (design), distance to the nearest transit stop (distance to transit), and 
45-minute job accessibility (destination accessibility). 
 
Ordinary least square (OLS) regression models were also used to regress walking mode 
share on building distance while controlling for the aforementioned built environment 
variables. For each urban area, one model was estimated with a building distance term, 
while another excluded this term to serve as a null comparison. Coefficients of 
determination (R2) were compared between the models to examine the additional 
explanatory power of building distance. 
 
Because many of the built environment and mode share variables had non-normal 
distributions, and this analysis was primarily intended to examine relationship directions, 
not precise effect sizes, confidence intervals on parameter estimates were not calculated 
or used as evaluation criteria. Further research should investigate data transformations 
and model structures that are more suitable for precise estimates of effect sizes and 
errors. 
 
All data processing and calculations were coded in Python with open-source packages. 
Geoprocessing, statistical analyses were enabled by the Geopandas, Shapely, OSMnx, 
and StatsModels packages, as well as customized tools from my StreetSpace package. 

Results 
 
Distributions of building distance varied substantially between the 96 urban areas (Figure 
1). Predominant building distances within most urban areas were between 20 and 40 
meters, with cases above 70 meters quite rare in most areas. Clusters of similar 
distributions appeared to be organized regionally. Western urban areas, including Los 
Angeles; Salt Lake City; Portland, OR; Seattle; Layton, UT; and Stockton, CA, formed 
the cluster of distributions with large peaks around 20 meters, suggesting that streetscape 
enclosure was fairly high (indicated by low building distances), and also fairly consistent, 
within each of these urban areas. By contrast, southeastern urban areas, including 
Raleigh; Winston-Salem; Greenville; Augusta—Richmond, GA; and Chattanooga, 
tended to have shallower distributions peaking around 35 meters. This suggested that 
southeast streetscapes had more varied degrees of enclosure and also lower enclosure 
(larger building distances) overall. Honolulu represented the extreme end of variability in 
building distance, suggesting that it offered substantial heterogeneity in streetscape 
enclosure across the urban area. Identifying and understanding regional patterns in these 
distributions offers a substantial opportunity for further research. 
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Figure	2.	Overlaid	frequency	distributions	of	average	building	distance	by	block	group.	One	distribution,	
representing	frequency	of	block	groups	as	a	percentage	of	block	groups	within	a	given	urban	area,	is	drawn	for	
each	urban	area.	Urban	areas	that	demonstrate	contrasting	distributions	are	highlighted.	

Results from correlation analyses suggested that building distance were moderately 
associated with walking mode share and other built environment variables, though not 
entirely as expected. Figure 3 shows frequency distributions of Pearson correlations 
between building distance and comparison variables. Each distribution is for a single 
comparison variable, and each accounts for correlation coefficients across all 96 urban 
areas.  
 

 
Figure	3.	Frequency	distributions	of	Pearson	correlations	between	average	building	distance	and	mode	share	or	
built	environment	variables	within	each	urban	area.	One	distribution,	representing	frequency	of	urban	areas	as	
a	count,	is	draw	for	each	pairwise	correlation.	Distributions	are	independently	calculated	but	are	presented	on	
the	same	axis	for	space	economy.	

Urban design literature proposes that greater enclosure, indicated by lower building 
distance, is more conducive to walking, so we would expect a negative correlation 
between building distance and walking mode share. This expectation is upheld within 
many urban areas, as indicated by the distribution marked “Walking Commute Mode 
Share” in Figure 3. Nonetheless, a large proportion of urban areas feature a positive 
correlation with walking mode share, suggesting either that building distance does not 
adequately represent the influence of enclosure, or that enclosure is not, on its own, 
clearly associated with commuting by walking. The distribution for “Walking & Transit 
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Commute Mode Share” is even less consistent with the expectation of a negative 
correlation. Examining what differentiates urban areas with positive and negative 
correlations is a possible area for future research.  
 
Correlations between building distances and other built environment variables were low 
to moderate in magnitude, suggesting that building distance, and the underlying property 
of enclosure, offers a fairly independent measure of urban form. Correlations with 
intersection density, commonly used as an indicator of “design,” were somewhat higher 
than those with other built environment variables, but still generally less than -0.5. The 
signs of correlations with built environment variables were generally consistent with 
expectations. Lower building distance reflects greater built environment density, so 
negative correlations with intersection density, population density, and distance to transit 
and employment metrics were expected. It was interesting that correlations with land use 
entropy were generally positive, but this may reflect greater enclosure in predominantly 
residential areas and lower enclosure in non-downtown commercial areas. A more 
detailed analysis of associations between building distance and land uses would be useful 
for interpreting this result. 
 
Regression models that examined relationships between building distance and walking 
mode share while controlling for other built environment variables also yielded 
somewhat unexpected results. In models that included a building distance term, 
parameter estimates for this variable were predominantly positive (see table in Appendix 
1). This indicates that, all else equal, less enclosed streetscapes were associated with 
greater walking mode share. While counterintuitive, this suggests that enclosure may 
have poorly understood influences on walking in places where enclosure and other built 
environment variables are combined in unusual ways. These results may also have been 
impacted by the narrow focus of census statistics on walking for commuting while 
excluding walking for other purposes, including recreation. Further research ought to 
refine this analysis with more sophisticated models, interactions between built 
environment variables, and more robust representations of walking behavior. 
 
Comparisons model fit between OLS models with and without building distance terms 
suggested that marginal effects of enclosure on walking behavior varied substantially 
between different urban areas (see table in Appendix 1). At the extreme end of 
distribution, R2 in the Columbia, SC urban area increased by 0.22 with the addition of the 
building distance term. In many other urban areas, building distance added no 
explanatory power. Given the simplicity of these models, effect sizes and fit statistics 
should be interpreted cautiously, but investigating variation in effect sizes and model fit 
could be fruitful area for further research. 

5 Conclusions 
Urban design theory suggests that accounting for streetscape-scape design variables in 
travel analyses offers substantial potential to better account of walking and other modes 
where user experiences are directly influenced by design contexts. Once such variable, 
enclosure, may efficiently approximated by sampling distances to building footprints, and 
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increasingly common urban dataset. This paper describes how such a simplified measure, 
building distance, can be calculated, and explores whether it accounts for additional 
variability in urban form and walking mode share. Results suggest that building distance 
is fairly independent from more traditional built environment variables and may have 
substantially different relationships with walking behavior depending on context, 
including relationships that are counterintuitive to prevailing theory. There are myriad 
avenues for further research to refine the building distance measure, more precisely 
identify its relationship with travel behavior, and examine how these relationships are 
organized by geographic region or other contextual factors. 
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Appendix 1 – Statistics by Urban Area 
 
Column Definitions 
 
Analysis Units 

Points: Count of analysis points along street centerlines at which the distance to closest building was measured 

Block Groups: Count of block groups within distances to closest building were averaged 

 

Pearson Correlation with Distance to Closest Building (block group unit of analysis) 

Walk + Transit Mode Share: Proportion of commutes made by walking and transit (2015-2017 American Community Survey) 

Walk Mode Share: Proportion of commutes made by walking (2015-2017 American Community Survey) 

Pop. Dens.: Gross population density (people/acre) (EPA Smart Location Database) 

L.U. Entr.: Emplyment and household entropy (EPA Smart Location Database) 

Int. Dens.: Street intersection density without auto-oriented intersections (EPA Smart Location Database) 

Transit Dist.: Distance from population weighted block group centroid to nearest transit stop (EPA Smart Location Database) 

Job Accs.: Jobs within 45 minutes auto travel time, decay weighted (EPA Smart Location Database) 

 

OLS Regression (block group unit of analysis) 
bDist.: Parameter estimate for building distance while regressing walking mode share on building distance, population density, land use entropy, intersection density, 

distance to transit, job accessibility, and a constant intercept. 
D R2: Difference in R2 between models that include a building distance term and a comparison model without it. Both models include terms for population density, land use 

entropy, intersection density, distance to transit, job accessibility, and a constant intercept. 

 

 
 Analysis Units Pearson Correlations with Building Distance OLS Regression 

Urban Area 
(sorted by correlation between Walk + Transit 

Mode Share and Building Distance)  Points 
Block 

Groups 

Walk + 
Transit 
Mode 
Share 

Walk 
Mode 
Share 

Pop. 
Dens. 

L.U. 
Entr. 

Int. 
Dens. 

Transit 
Dist. 

Job 
Accs. bDist. D R2 

Lancaster, PA 200291 187 -0.24 -0.20 -0.53 0.15 -0.57 -0.11 -0.14 -0.04 0.00 

Allentown, PA--NJ 422462 390 -0.17 -0.12 -0.44 0.26 -0.51 -0.20 -0.06 0.01 0.00 

Port St. Lucie, FL 374409 186 -0.15 -0.11 -0.46 0.36 -0.51 
 

-0.08 -0.02 0.00 

Harrisburg, PA 306185 254 -0.15 -0.03 -0.55 0.11 -0.55 -0.02 -0.22 0.18 0.04 

Madison, WI 205686 202 -0.13 -0.20 -0.26 0.16 -0.48 -0.21 -0.11 0.08 0.00 

Milwaukee, WI 931459 1106 -0.13 -0.03 -0.46 0.32 -0.37 -0.23 -0.18 0.06 0.01 

Seattle, WA 1950821 2119 -0.12 -0.01 -0.28 0.21 -0.36 -0.17 -0.17 0.08 0.00 

New Haven, CT 370784 417 -0.12 -0.12 -0.39 0.20 -0.45 0.01 -0.20 0.12 0.01 

San Francisco--Oakland, CA 1284921 2247 -0.11 -0.04 -0.26 0.19 -0.18 -0.07 -0.12 0.03 0.00 

Louisville/Jefferson County, KY--IN 674946 660 -0.11 -0.01 -0.51 0.24 -0.29 -0.23 -0.18 0.08 0.01 
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 Analysis Units Pearson Correlations with Building Distance OLS Regression 

Urban Area 
(sorted by correlation between Walk + Transit 

Mode Share and Building Distance)  Points 
Block 

Groups 

Walk + 
Transit 
Mode 
Share 

Walk 
Mode 
Share 

Pop. 
Dens. 

L.U. 
Entr. 

Int. 
Dens. 

Transit 
Dist. 

Job 
Accs. bDist. D R2 

Charleston--North Charleston, SC 408188 275 -0.11 -0.12 -0.44 0.21 -0.46 
 

-0.09 0.07 0.01 

Murrieta--Temecula--Menifee, CA 224386 148 -0.11 -0.09 -0.49 0.22 -0.59 -0.18 -0.19 -0.01 0.00 

Reno, NV--CA 250567 244 -0.11 -0.05 -0.45 0.15 -0.52 -0.29 -0.19 0.01 0.00 

Baltimore, MD 1210111 1554 -0.10 -0.05 -0.28 0.22 -0.24 -0.14 -0.01 0.02 0.00 

Tucson, AZ 596676 518 -0.10 0.00 -0.45 0.12 -0.36 
 

-0.23 0.09 0.01 

Grand Rapids, MI 374309 335 -0.09 0.08 -0.58 0.26 -0.58 
 

-0.42 0.16 0.05 

Hartford, CT 588290 621 -0.09 -0.03 -0.36 0.25 -0.42 
 

-0.10 0.06 0.00 

Nashville-Davidson, TN 678009 543 -0.09 -0.07 -0.37 0.24 -0.20 0.02 -0.17 0.06 0.01 

Rochester, NY 418758 539 -0.08 0.09 -0.57 0.26 -0.48 -0.27 -0.18 0.21 0.03 

St. Louis, MO--IL 1621605 1431 -0.08 0.01 -0.46 0.22 -0.32 -0.20 -0.13 0.07 0.01 

Poughkeepsie--Newburgh, NY--NJ 289011 260 -0.07 -0.02 -0.50 0.05 -0.56 -0.06 -0.21 0.22 0.04 

Chicago, IL--IN 4436333 5904 -0.07 0.06 -0.14 0.20 -0.03 -0.18 -0.08 0.03 0.00 

Columbus, OH 860908 920 -0.07 -0.06 -0.36 0.32 -0.35 -0.24 -0.17 0.06 0.01 

Richmond, VA 775364 526 -0.07 -0.01 -0.33 0.30 -0.48 
 

-0.15 0.09 0.01 

Atlanta, GA 3514229 2013 -0.07 -0.01 -0.28 0.29 -0.31 -0.19 -0.20 0.08 0.01 

Augusta-Richmond County, GA--SC 296264 192 -0.07 -0.05 -0.46 0.31 -0.43 
 

-0.20 0.13 0.02 

Fresno, CA 394915 387 -0.06 0.02 -0.43 0.16 -0.43 
 

-0.17 0.02 0.00 

Ogden--Layton, UT 315390 270 -0.06 0.01 -0.62 0.21 -0.56 -0.16 -0.07 -0.03 0.00 

Mission Viejo--Lake Forest--San Clemente, CA 307304 357 -0.06 -0.05 -0.33 0.22 -0.37 -0.04 0.02 -0.01 0.00 

Worcester, MA--CT 289262 296 -0.06 -0.05 -0.46 0.25 -0.49 0.04 -0.01 0.19 0.04 

Denton--Lewisville, TX 258318 208 -0.05 -0.04 -0.34 0.28 -0.54 0.24 0.33 0.03 0.02 

Minneapolis--St. Paul, MN--WI 1910009 1857 -0.04 0.05 0.00 0.33 -0.30 -0.23 -0.15 0.03 0.00 

Bakersfield, CA 277940 267 -0.04 0.01 -0.55 0.25 -0.48 -0.18 -0.14 0.08 0.04 

Denver--Aurora, CO 1531321 1602 -0.04 -0.01 -0.30 0.25 -0.32 -0.16 -0.15 0.02 0.00 

Boston, MA--NH--RI 2574067 2989 -0.03 0.07 -0.18 0.19 -0.18 -0.20 -0.04 0.07 0.00 

Baton Rouge, LA 430727 302 -0.03 0.01 -0.34 0.31 -0.37 
 

-0.06 0.04 0.01 

Memphis, TN--MS--AR 745953 635 -0.03 0.01 -0.33 0.23 -0.39 0.03 -0.18 0.04 0.01 

Buffalo, NY 550316 778 -0.03 0.07 -0.44 0.16 -0.25 -0.24 -0.29 0.16 0.04 

Akron, OH 409508 431 -0.03 0.05 -0.40 0.23 -0.57 
 

-0.24 0.11 0.01 

Birmingham, AL 680630 482 -0.03 -0.01 -0.37 0.29 -0.43 -0.16 -0.10 0.06 0.01 

Albany--Schenectady, NY 391822 426 -0.02 0.04 -0.48 0.27 -0.42 -0.30 -0.06 0.35 0.06 

Los Angeles--Long Beach--Anaheim, CA 4472682 7780 -0.02 0.04 -0.26 0.17 -0.18 -0.11 -0.09 0.07 0.01 

San Antonio, TX 1061806 1065 -0.02 0.10 -0.50 0.23 -0.47 
 

-0.24 0.04 0.01 

Austin, TX 803476 665 -0.02 -0.05 -0.31 0.22 -0.40 -0.15 -0.15 0.07 0.02 

Cape Coral, FL 764865 392 -0.02 0.07 -0.44 0.18 -0.43 -0.25 -0.04 0.01 0.00 
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Sarasota--Bradenton, FL 685815 419 -0.02 0.00 -0.50 0.11 -0.51 -0.22 -0.13 0.02 0.00 

Syracuse, NY 263969 305 -0.02 0.08 -0.49 0.34 -0.47 
 

-0.19 0.31 0.04 

Orlando, FL 930748 550 -0.02 -0.01 -0.23 0.25 -0.46 
 

-0.09 0.02 0.00 

Palm Bay--Melbourne, FL 412564 231 -0.02 0.06 -0.55 0.34 -0.50 -0.07 0.14 0.02 0.00 

Tampa--St. Petersburg, FL 1934371 1687 -0.02 0.06 -0.29 0.24 -0.45 -0.18 -0.08 0.04 0.01 

Cleveland, OH 1085732 1393 -0.01 0.04 -0.31 0.26 -0.33 -0.23 -0.11 0.10 0.01 

Providence, RI--MA 833532 865 -0.01 0.03 -0.50 0.28 -0.53 -0.22 -0.25 0.18 0.03 

Phoenix--Mesa, AZ 2486010 2296 0.00 0.06 -0.31 0.17 -0.38 0.02 -0.16 0.04 0.01 

McAllen, TX 413726 252 0.01 0.04 -0.64 -0.02 -0.55 
 

-0.23 0.05 0.02 

Chattanooga, TN--GA 370378 228 0.01 0.10 -0.53 0.15 -0.48 
 

-0.17 0.08 0.01 

Detroit, MI 2732811 3222 0.02 0.06 -0.45 0.27 -0.29 -0.08 -0.05 0.03 0.00 

Des Moines, IA 290614 279 0.02 0.03 -0.61 0.36 -0.48 
 

-0.22 0.09 0.04 

Winston-Salem, NC 363309 226 0.02 0.11 -0.36 0.06 -0.41 
 

-0.19 0.15 0.04 

Raleigh, NC 669308 369 0.02 0.02 -0.31 0.11 -0.50 -0.19 -0.19 0.08 0.02 

Dayton, OH 536095 486 0.02 0.03 -0.55 0.19 -0.49 
 

0.01 0.15 0.03 

Jacksonville, FL 797459 526 0.02 0.09 -0.31 0.22 -0.37 0.05 -0.10 0.08 0.03 

Pittsburgh, PA 1270960 1300 0.02 0.09 -0.34 0.18 -0.34 -0.15 0.00 0.18 0.03 

Indianapolis, IN 1101595 792 0.03 0.13 -0.45 0.26 -0.36 -0.18 -0.10 0.08 0.02 

Toledo, OH--MI 351561 404 0.03 0.14 -0.54 0.29 -0.44 
 

-0.15 0.07 0.01 

Cincinnati, OH--KY--IN 1039390 1114 0.05 0.07 -0.38 0.20 -0.15 -0.19 -0.08 0.15 0.04 

Kansas City, MO--KS 1211079 1073 0.05 0.08 -0.39 0.20 -0.26 -0.10 -0.03 0.06 0.02 

Sacramento, CA 995547 1017 0.05 0.09 -0.12 0.29 -0.45 -0.17 -0.12 0.03 0.01 

Wichita, KS 348665 318 0.05 0.08 -0.39 0.22 -0.55 
 

-0.09 0.02 0.00 

Springfield, MA--CT 379831 380 0.05 0.09 -0.32 0.13 -0.48 -0.20 -0.12 0.18 0.02 

Little Rock, AR 336827 244 0.05 0.10 -0.61 0.31 -0.54 -0.29 -0.20 0.07 0.01 

Portland, OR--WA 1081712 1112 0.06 0.18 -0.31 0.30 -0.32 -0.17 -0.13 0.19 0.03 

Concord, CA 351499 331 0.06 0.02 -0.10 0.14 -0.35 -0.22 0.03 0.03 0.00 

El Paso, TX--NM 459013 458 0.07 0.03 -0.54 0.25 -0.47 
 

-0.15 0.11 0.04 

San Diego, CA 1330484 1671 0.07 0.18 -0.29 0.29 -0.31 -0.16 -0.06 0.07 0.02 

Bridgeport--Stamford, CT--NY 633315 632 0.07 0.10 -0.42 0.14 -0.47 -0.01 -0.14 0.17 0.02 

Charlotte, NC--SC 965848 621 0.07 0.15 -0.28 0.11 -0.35 -0.05 -0.11 0.08 0.04 

Las Vegas--Henderson, NV 1138494 1222 0.08 0.12 -0.34 0.27 -0.35 -0.19 -0.07 0.08 0.02 

Greenville, SC 338638 186 0.08 0.07 -0.27 0.17 -0.49 0.23 -0.24 0.11 0.03 

San Jose, CA 715933 1015 0.08 0.07 -0.13 0.20 -0.11 0.18 0.01 0.03 0.00 

Omaha, NE--IA 577556 641 0.09 0.11 -0.51 0.24 -0.51 
 

-0.13 0.07 0.02 
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Riverside--San Bernardino, CA 939627 948 0.09 0.12 -0.47 0.17 -0.48 -0.03 0.02 0.07 0.02 

Tulsa, OK 485032 385 0.09 0.05 -0.38 0.25 -0.54 
 

-0.13 0.07 0.03 

Colorado Springs, CO 373123 297 0.11 0.13 -0.44 0.29 -0.52 -0.11 -0.17 0.06 0.03 

Albuquerque, NM 557371 446 0.11 0.12 -0.35 0.12 -0.43 -0.08 -0.08 0.08 0.02 

Spokane, WA 269714 241 0.11 0.15 -0.51 0.30 -0.48 -0.31 -0.08 0.16 0.03 

Oklahoma City, OK 696948 683 0.12 0.11 -0.53 0.20 -0.37 
 

-0.04 0.08 0.04 

Virginia Beach, VA 989190 949 0.13 0.15 -0.20 0.29 -0.39 -0.08 -0.06 0.10 0.04 

Provo--Orem, UT 266461 274 0.15 0.15 -0.23 0.05 -0.43 -0.09 -0.08 0.18 0.06 

New Orleans, LA 631433 860 0.15 0.13 -0.35 0.20 -0.10 -0.10 0.03 0.16 0.04 

Stockton, CA 169349 205 0.15 0.13 -0.42 0.32 -0.46 -0.22 -0.01 0.12 0.04 

Knoxville, TN 493528 249 0.17 0.18 -0.19 0.42 -0.47 
 

-0.05 0.23 0.10 

Salt Lake City--West Valley City, UT 596698 585 0.18 0.18 -0.31 0.19 -0.34 -0.17 -0.11 0.19 0.06 

Columbia, SC 448671 290 0.31 0.34 -0.28 0.17 -0.53 
 

-0.19 0.53 0.22 

Urban Honolulu, HI 248899 457 0.32 0.40 0.23 0.22 0.01 -0.11 0.30 0.06 0.02 

 
 


